How to use sensitivity analyses to explore RuFaS performance

Or, not-so-spherical cows in parallel universes

Joseph C. Waddell Cornell University 2022 November 4

Models and Uncertainty

- Model 1: R² = 0.2
- Model 2: R² = 0.8

The **what** of sensitivity analyses

The what of sensitivity analyses

- A few key terms:
 - Diagnostic v. prognostic models
 - Law-driven v. data-driven models
 - Local v. Global analysis
 - Scatterplot v. derivative methodology

Question: which type(s) of sensitivity analysis approaches are important for RuFaS?

 Global analyses on a prognostic model that is both law- and datadriven

...also

 Local analysis of any given variable to inform future model improvements

The **why** of sensitivity analyses for RuFaS

- Model evaluation: computational insight
 - Which parameters are most influential in the model?
 - Do certain parameter ranges cause unexpected behavior?
- Model evaluation: the biological underpinnings
 - Model performance and accuracy
 - Unexpected biological interactions?
- Practical concerns in moving forward
 - Which parameters should be measured in the field?

The how of sensitivity analyses

- Decide on a set of variables and their bounds
- Vary the inputs
- Run the model for each input set
- Record the outputs of interest
- Evaluate the results

....repeat?

Equation (1.36) can be rewritten as

$$\frac{V(E(Y \mid Z_i, \Omega_j))}{V(Y)} = S_{Z_i} + S_{\Omega_i} + S_{Z_i, \Omega_i},$$

where $S_{\Omega_i} = 0$, $S_{Z_i,\Omega_i} = V_{Z_i,\Omega_i}/V(Y)$ and the term V_{Z_i,Ω_i} is the only type of nonzero second-order term in model (1.3).

Table 1.4 First- and second-order indices for model (1.3, 1.27, analytic), where r = 4, c = 0.5, $\sigma = (1, 2, 3, 4)$ for both Ω_i and Z_i

Factor	S_i, S_{ij}	Factor	S _{ij}	Factor	S _{ij}
Z_1	0.0006	Z_1, Ω_2	0	Z_3, Ω_3	0.183
Z_2	0.009	Z_1, Ω_3	0	Z_3, Ω_4	0
Z_3	0.046	Z_1, Ω_4	0	Z_4, Ω_1	0
Z_4	0.145	Z_2, Z_3	0	Z_4, Ω_2	0
341	Ũ	Z_2, Z_4	0	Z_4, Ω_3	0
Ω_2	0	Z_2, Ω_1	0	Z_4, Ω_4	0.578
Ω_3^-	0	Z_2, Ω_2	0.036	Ω_1, Ω_2	0
Ω_4	0	Z_2, Ω_3	0	Ω_1, Ω_3	0
Z_1, Z_2	0	Z_2, Ω_4	0	Ω_1, Ω_4	0
Z_1, Z_3	0	Z_{3}, Z_{4}	0	Ω_2, Ω_3	0
Z_1, Z_4	0	Z_3, Ω_1	0	Ω_2, Ω_4	0
Z_1, Ω_1	0.002	Z_3, Ω_2	0	Ω_3, Ω_4	0

Sample approach: Fractional factorial design

Assay	Variabl	le levels	Response			
	SCM ^b	CSL ^c	YEP ^d	K ₂ HPO ₄	pН	Enzyme activity (U/ml)
1	-1	-1	-1	-1	1	2.27
2	1	-1	-1	-1	-1	1.11
3	-1	1	-1	-1	-1	4.11
4	1	1	-1	-1	1	12.44
5	-1	-1	1	-1	-1	3.59
6	1	-1	1	-1	1	14.68
7	-1	1	1	-1	1	5.56
8	1	1	1	-1	-1	0.20
9	-1	-1	-1	1	-1	2.40
10	1	-1	-1	1	1	5.89
11	-1	1	-1	1	1	5.77
12	1	1	-1	1	-1	0.20
13	-1	-1	1	1	1	5.12
14	1	-1	1	1	-1	0.68
15	-1	1	1	1	-1	4.82
16	1	1	1	1	1	11.92

Expectations of nonlinearity in RuFaS

• Fractional factorial design in conjunction with other approaches

Assay	Variabl	le levels	Response			
	SCM ^b	CSL ^c	YEP ^d	K ₂ HPO ₄	pН	Enzyme activity (U/ml)
1	-1	-1	-1	-1	1	2.27
2	1	-1	-1	-1	-1	1.11
3	-1	1	-1	-1	-1	4.11
4	1	1	-1	-1	1	12.44
5	-1	-1	1	-1	-1	3.59
6	1	-1	1	-1	1	14.68
7	-1	1	1	-1	1	5.56
8	1	1	1	-1	-1	0.20
9	-1	-1	-1	1	-1	2.40
10	1	-1	-1	1	1	5.89
11	-1	1	-1	1	1	5.77
12	1	1	-1	1	-1	0.20
13	-1	-1	1	1	1	5.12
14	1	-1	1	1	-1	0.68
15	-1	1	1	1	-1	4.82
16	1	1	1	1	1	11.92

Random isn't (always) ideal

Pause for practicality: real-world implementation

- RuFaS simulation time: 5 minutes
- "Simple" set of *just* 1,000 simulations
- 5,000 minutes = 83.3 hours = ca. 3.5 *days*
- Spoiler alert: we'll need closer to 40,000 simulations for a single analysis of a (relatively) narrow set of input variables
 - Almost five months of computing time (i.e., core hours)

Random sampling v. quasi-random sampling via low-discrepancy sequences

Quasi-random sampling with low-discrepancy sequences

Applying sensitivity analysis methods to RuFaS

'IE':

- Python implementation: SALib
 - Usher et al 2016
- Decide on a set of variables and their bounds
 - Which variables do we want to evaluate? Over what ranges?
- Vary the inputs: populate necessary JSONs using appropriate sampling sequence
- Run RuFaS x times
- Record the outputs: collect reports
- Evaluate the results: calculate sensitivity indices for easis_cost_reed_netertat is {'names': ['breeding_st variable

100 V	ariable list	a = [
101	['breeding st	tart day	n'. 380.	381.							
102	['heifer rep	ro cull t	ime', 14	0, 14],							
103	'estrus dete	ection ra	te h', 0	.6, 0.12],						
104	['cull_milk_p	 productio	n', 17.0	, 8],				herd_rep	oort_0000	0	
105	['cow_times_r	milked_pe	r_day',	2, 1.5],				herd_rep	oort_0000	01	
106	['wean_day',	60, 60*.	25], ifon' 2	4 51				herd rep	ort 0000)2	
107	['still birt	h rate',	0.065, 0	+, 5], .065*.25	1.			berd rer	ort 0000	12	
109	['horizontal	dist to	milking	parlor',	1.6, .5					5	
110	'mature_body	y weight	avg', 74	0, 50],				herd_rep	port_0000	14	
111]								herd_rep	oort_0000)5	
								herd_rep	ort_0000	06	
				_				herd_rep	oort_0000	07	
<pre>>>> param_ array([3.]</pre>	_values[1,:] 50711426e+02, 1	.39176270e+(92. 6.8059	5703e-01.	1.892773446	<u>+</u> 01.		herd rer		19	
9.9	94750977e-01, 6	.12854004e+0	1, 2.6086	1816e+01,	7.59457397e	e-02,				0	
1.7	76296387e+00, 7	.89475098e+6	2, 8.4509	2773e-01, 1	1.11206055e	-01,		herd_rep	ort_0000	9	
>>> param	values[2,:]	.948974012-0	1, 0.0247	580e-01, 2	2.777099010	-01])					
array([3.4	42027832e+02, 1	.42525879e+6	02, 6.8059	5703e-01,	1.89277344e	H01,					
9.9	94750977e-01, 6	.12854004e+0	1, 2.6086	1816e+01,	7.59457397e	-02,					
5.1	6296387 01 00, 7	.894/5098000	Z, 8.4509	2773e-01,	0.11200055e	-01,		aug octaus		dict to	hadu
>>> param	1	breeding	repro cull	detection	cuil milk	cow times		avg estrus	ctill birth	aist to milking	body weight
array([3.4	Input variable	start day h	time	rate h	n	ner dav	wean day	heifer	rate	narlor	avg
9.9	First-order	Start day in		Tute II		perady	wearraay	menter	Tute	purior	ura .
5.3	indices	0.0081218	0.0614779	0.0809962	0.0280595	0.0071462	0.011352	0.0241205	0.0045237	0.0203795	0.029872
	Total	0.1855211	0.2133267	0.3581576	0.0611922	0.0935946	0.111376	4 0.2242932	0.1351403	0.1873338	0.2006136
	Second-order	0.1576839									
day h'	indices	0.0712432	0.3932851								
av([0.09		0.3097194	0.3262099	-0.482161							
ion names		0.1819857	0.3838208	-0.123091	0.2664781						
01642968		0.1072775	0.1774542	-0.215749	0.245391	0.1320809					
		0.0507475	0.1909522	-0.143223	0.0866544	0.1177079	0.03705	5			
		0.1916498	0.3733005	-0.081864	0.2529797	0.2480618	0.010379	5 0.3319189			
		0.0730517	0.276491	-0.042966	0.1005917	0.1012928	0.036409	4 0.2830492	0.1344224		
											,

Example outputs from RuFaS

Time needed to evaluate RuFaS

10 variables, with second-order effects (i.e., interactions)

- Fractional factorial design
 - 32 simulations, 2.6 hours to run
- Saltelli method
 - Approx. 35,000 simulations
 - Approx. 3,000 hours (120+ days!)

How can we improve model evaluation times?

Iterated fractional factorial approach

- Define & evaluate major endpoints of interest
- Evaluate 'slices' within these ranges
- ...repeat
- Andres and Hajas, 1993

Fourier-transform-based approach(es)

- FAST method: Fourier amplitude sensitivity test
 - Saltelli et al 2012, Zhang et al 2015, Wang and Solomantine 2019
- SALib implementation: eFAST (extended Fourier amplitude sensitivity test)

Simulation times for comparable approach(es) to evaluate RuFaS

10 variables, with second-order effects (i.e., interactions)

Saltelli method

>35,000 simulations
>3,000 hours = >4 months

eFAST method

<17,000 simulations <1,500 hours ("only" approx. 55 days!)

How can we *further* improve model evaluation times?

Sequential v. parallel computing

RuFaS parallelized

- Running simultaneous simulations from a pregenerated list of inputs
- General workflow:
 - Decide on input variables of interest
 - Set upper and lower boundaries
 - Generate input sequences/combinations

0	variable_list_a = [
1	['breeding_start_day_h', 380, 38],		
2	['heifer_repro_cull_time', 140, 14],		
3	['estrus_detection_rate_h', 0.6, 0.12],		
4	['cull_milk_production' 17 0 8]		
5	['cow_times_milk >>> param_values[1,:]	00505703 04	4 00077344 04
6	['wean_day', 60, array([3.50/11426e+02, 1.391/62/0e+02, 6	.80595703e-01,	1.892//344e+01,
7	['avg_estrus_cyc 9.94/509//e-01, 6.12854004e+01, 2	.60861816e+01,	7.59457397e-02,
8	['still_birth_ra 1.76296387e+00, 7.89475098e+02, 8	.45092773e-01,	1.11206055e-01,
9	['horizontal_dis 5.25268555e-01, 3.94897461e-01, 6	.62475586e-01,	2.77709961e-01])
9	['mature_body_we >>> param_values[2,:]		
1] array([3.42027832e+02, 1.42525879e+02, 6	.80595703e-01,	1.89277344e+01,
	9.94750977e-01, 6.12854004e+01, 2	.60861816e+01,	7.59457397e-02,
	1.76296387e+00, 7.89475098e+02, 8	.45092773e-01,	1.11206055e-01,
	5.25268555e-01, 3.94897461e-01, 6	.62475586e-01,	2.77709961e-01])
	<pre>>>> param_values[3,:]</pre>		
	array([3.42027832e+02, 1.39176270e+02, 4	.90869141e-01,	1.89277344e+01,
	9.94750977e-01, 6.12854004e+01, 2	.60861816e+01,	7.59457397e-02,
	1.76296387e+00, 7.89475098e+02, 8	.45092773e-01,	1.11206055e-01,
	5.25268555e-01, 3.94897461e-01, 6	.62475586e-01,	2.77709961e-01])
	Animal_management_00000.json	× >	herd_report_00000
	Animal_management_00001.json		herd_report_00001
	Animal_management_00002.json		herd_report_00002
	{} animal_management_00003.json	>	herd_report_00003
es	A animal_management_00004.json	> 	herd_report_00004
	() animal_management_00005.json	>	herd_report_00005
	animal_management_00006.json Parallel	<pre>></pre>	herd_report_00006
	animal_management_00007.json	> <	herd_report_00007
	animal_management_00008.json Computing	<pre>></pre>	herd_report_00008
	{} animal_management_00009.json	>	herd_report_00009
			1 1

animal management_00011.json

animal_management_00012.json

animal management 00013.json

animal_management_00014.json

herd report 00011

herd_report_00012

herd report 00013

herd_report_00014

Simulation times for comparable approach(es) to evaluate RuFaS

10 variables, with second-order effects (i.e., interactions)

Saltelli method

> 35.k simulations
3k hours (4 months) / X cores = approx. 2 weeks on an 8-core system

eFAST method

<17k simulations < 55 days / X cores = approx. 1 week on an 8-core system *or, less than a day* on a 64-core system

Resources: parallel & cloud computing option

- "By hand" across more than one system
- Cornell's CAC resources
 - Cloud-based Virtual Machines (\

Ins	stances							
							Instance I	D = '
Displ	aying 1 item							
	Instance Name	Image Name	IP Address	Flavor	Key Pair	Status		
	Initialtest_jw2574	-	128.84.8.67	c1.m8	RUFASjw2574	Shelved Of	floaded	-

Ongoing objectives

- Yijing: detailed analysis of the Life Cycle portions of the Animal Module
- My immediate focus: *the rest* of the Animal Module
- Applicable to the entirety of RuFaS

