



# Updating nutrient requirements and supply: NRC (2001) vs. (NASEM 2021)

### Edward H. Cabezas Garcia, PhD. Postdoctoral Associate

November 3 / 2022



## **Overview**

- Nutritional recommendations for feeding dairy cattle in the USA have been updated. NRC (2001) vs NASEM (2021).
- **RuFaS** model still formulates rations based on NRC (2001) system.
- ✓ A simulation for predicting both nutrient requirements and nutrients supply is presented – dairy cow example.
- ✓ On-going and future work.



# Nutritional requirements for feeding dairy cattle have been updated



## **Energy requirements**

- ✓ Studies after the NRC (2001) was released indicated that system underestimated the maintenance requirement of modern dairy cattle.
- ✓ Lactation energy requirements changed slightly because the efficiency coefficient (0.66) has changed from 0.64.
- ✓ Better predictions of true BW gains (frame) in NASEM (2021) as beef cattle data is not longer considered.

#### *NElmaint* = $0.8 vs 0.10 \times BW^{0.75}$



## Protein requirements

- In addition to metabolizable protein (MP), requirements of individual AA's have been considered in NASEM (2021). However, there is no "first limiting" amino acid concept as such.
- ✓ The protein and amino acids model has been adjusted focusing on milk protein yield.



Matthews et al. 2019. Gut Microbes 10(2):115-132.

 ✓ In both systems, total MP requirements includes = met. fecal + end. urinary + scurf + growth + lactation., But NASEM (2021) uses a combined efficiency of use of both MP and AA's.

#### Cornell University

## Protein degradation and fate of end products in the rumen



**RDP** = Rumen degradable

protein. To meet ammonia and amino acids (AA) requirements to maximize synthesis of microbial protein (MicP).

#### **RUP** = Rumen

undegradable protein. то provide the additional AA, in the correct balance, that the animal requires that are not provided by microbial protein.

## MP = Metabolizable protein.

The MP supply depends on RUP and microbial protein synthesis.

Bach et al., 2005. JDS 88:(E. Suppl.):E9-E21

## Energy and MP requirements - gestation

|           | Gestation NEL, Mcal/d |        | Gestation MP, g/d |        |                             |
|-----------|-----------------------|--------|-------------------|--------|-----------------------------|
| Day of    | NRC                   | NASEM  | NRC               | NASEM  |                             |
| gestation | (2001)                | (2021) | (2001)            | (2021) | For pregnancy weight        |
| 10        | 0                     | 0.01   | 0                 | 0      | gains                       |
| 50        | 0                     | 0.04   | 0                 | 3      | NPC (2001) Linear from      |
| 100       | 0                     | 0.1    | 0                 | 13     | 190 days of gestation.      |
| 150       | 0                     | 0.5    | 0                 | 43     |                             |
| 200       | 2.7                   | 1.4    | 199               | 125    | NASEM (2021). Considers     |
| 220       | 3.0                   | 2.0    | 245               | 185    | an exponential function     |
| 250       | 3.4                   | 3.5    | 306               | 320    | requirements prior calving! |
| 275       | 3.8                   | 5.4    | 357               | 489    |                             |

## **Minerals**

## Calcium NRC (2001) Absorbed grams

- Maint = 0.0154 (nonlact) or 0.031 (lact) g/kg BW
- Milk = 1.22 (H) or 1.45 (J) g/kg milk

### NASEM (2021) Absorbed grams

- Maint = 0.9 x DMI (kg)
- Milk = 1.03 (H) to 1.13 g/kg milk (function of milk protein)

## Phosphorus requirements change very little!

## Some considerations on nutrients supply



## Dry matter intake equations for lactating cows

#### NRC (2001)

 $DMI = (0.372 \times FCM + 0.0968 \times BW^{0.75}) \times (1 - \exp^{(-0.192 \times (WO(L+3.67)))})$ 

#### **NASEM (2021)**

 $DMI = [(3.7 + Parity) \times 5.7 + 0.305 \times MilkE + 0.022 \times BW)$ +(-0)689 - 1.87 × Parity) × BCS] × [1 - (0.212 + Parity × 0.136) × exp<sup>(-0.053 × DIM)</sup>]

#### Similarities

- ✓ Milk composition
- ✓ Body weight
- ✓ Lactation time

#### **NASEM** updates

- ✓ Effect of parity
- ✓ Body condition score

## DMI predictions for lactating cows



## Energy supply

- ✓ Digestibility discount as intake increases was too large in NRC (2001).
- ✓ Discount energy based on % of BW instead of multiples of maintenance.
- ✓ Total digestible nutrients (TDN) vs starch contents of feeds. TDN is not longer used in NASEM (2021).
- ✓ The non-fiber carbohydrate fraction (NFC) fraction was replaced with starch and residual organic matter (ROM).
- ✓ Energy supply improves based on discount values, CH₄, production and N discounts.

## **Protein supply**

- ✓ In NASEM (2021), microbial protein is estimated based on estimated rumen digested starch and fiber (according to diet composition, not digestion rates).
- Constant rates of passage are used for both forages and concentrates (NASEM, 2021). Instead of estimation of passage rate based on intake (NRC, 2001).
- ✓ Endogenous protein is NOT included in the MP supply in the updated system (NASEM, 2021).



Rumen undegradable protein is still based on the A, B, C fraction scheme described in NRC (2001)

# Current version of RuFaS model formulates rations based on NRC (2001)





**Animal Module overview** 

- ✓ Least-cost diets formulated for five animal categories including: calves, heifers, and cows (lactating and dry) on a daily basis: herd dynamics.
- Nonlinear programming-based deterministic global optimization (MINLP\_DGO) according to herd dynamics and available feedstuffs.
- ✓ Diets are formulated to fulfill energy, protein and minerals, along with other limitations on intake, FDN, and fat are considered as contrasts (NRC, 2001).

#### Cornell University

## An example of ration report for a pen (csv files)





Herd dynamics (day-to-day)

Feed library - **NRC (2001**) Daily amounts to be offered to the animals

| year | j_day | num_an<br>mals | 86<br>(LEGUMES,<br>FORAGE) | 26<br>(CORN,<br>YELLOW) | 118<br>(SOYBEAN) | 103<br>(OATS) | 136<br>(Dicalcium<br>Phosphate,<br>dibasic) | 139<br>(Limestone,<br>ground) |
|------|-------|----------------|----------------------------|-------------------------|------------------|---------------|---------------------------------------------|-------------------------------|
|      |       |                | kg                         | kg                      | kg               | kg            | kg                                          | kg                            |
| 2009 | 244   | 851            | 11270                      | 9512                    | 0                | 0             | 95.2                                        | 0                             |
|      |       |                | •                          | •                       | •                |               | •                                           | •                             |
| •    | •     | •              | -                          | •                       | -                | •             | •                                           | •                             |

## Updating nutritional recommendations NRC (2001) vs NASEM (2021)



### Animal model

- ✓ Breed: Holstein (481 kg at 1 DIM).
- ✓ **Parity: 1**. Pregnant at 90 DIM.
- ✓ BW data retrieved from a random cow within RuFaS simulation.
- ✓ Wood's lactation curve (Li et al. 2022).
- ✓ Milk composition. Diet = 50 For. : 50 Conc. (Cabezas-Garcia et al. 2021).
- ✓ BCS according to Truman et al. 2022.



## Diet offered – ingredient composition

| Ingredient          | % DM basis |                   |
|---------------------|------------|-------------------|
| Corn silage         | 32.7       | Forage-to-        |
| Alfalfa             | 17.8       | concentrate ratio |
| Shelled corn        | 24.5       | 50:50             |
| Fuzzy cottonseed    | 9.3        |                   |
| Soybean meal        | 5.2        |                   |
| Soybean meal heated | 5.2        |                   |
| Distillers grain    | 5.2        | By-product        |

## Diet offered – nutrients supply

| Nutriopt         | NRC    | NASEM  |
|------------------|--------|--------|
| Nuthent          | (2001) | (2021) |
| NEL, Mcal/kg     | 1.66   | 1.81   |
| Crude protein, % | 16.2   | 17.2   |
| NDF, %           | 29.7   | 30.2   |
| Calcium, %       | 0.64   | 0.60   |
| Phosporus, %     | 0.39   | 0.38   |

In addition to differences in prediction equations, this may suggest considerable differences in feedstuffs composition – libraries.

#### Cornell University

### Comparison of feeding systems – NEL requirements



The NRC (2001) predicted an increased energy deficiency (NEL, Mcal/d) during the first of lactation for the offered diet.

## Comparison – MP requirements at the peak of lactation

| Item              | NRC (2001) NASEM (2021) |      |  |
|-------------------|-------------------------|------|--|
| Animal factors    |                         |      |  |
| Milk yield, kg/d  | 37.9                    |      |  |
| Time to peak, DIM | 105                     |      |  |
| DMI, kg/d         | 23.7                    | 21.0 |  |
| Met. Protein, g/d |                         |      |  |
| Supply            | 2289                    | 2100 |  |
| Requirement       | 2492                    | 2395 |  |
| Balance           | -203                    | -295 |  |

## **Final remarks**



## On-going and pending work

- ✓ To implement revised Pseudocode with updated NASEM (2021) equations within RuFaS.
- To evaluate user-input diets for comparison purposes with optimized diets.
- I'm happy to discuss ideas towards improvements in feed formulation submodule. Feedback is always appreciated!



Cornell University

