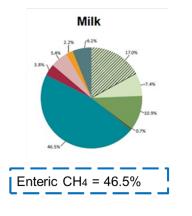
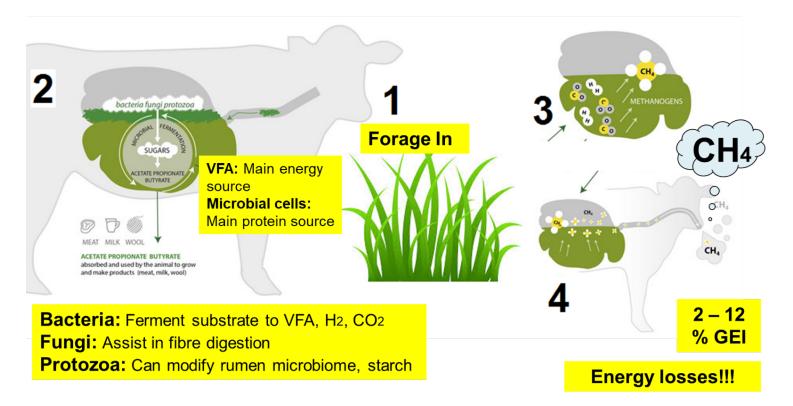

Representation of Enteric Methane Mitigation Supplements

Edward H. Cabezas Garcia, PhD. Postdoctoral Associate


November 3 / 2022

A bit of context of global context...

GHG emissions per kg of edible product (kg CO₂ Eq.) Source: Chatham House "Changing Climate, Changing Diets," 2015


80 Ruminants: no direct competition with humans for foodstuffs. 70 56.6 60 **High quality** 50 food 40 31.3 30 20 3.9 10 0 BEEF LAMB CATTLE SOYBEAN PORK CHICKEN EGGS MILK *Soybean calculation reflects a no-tillage cultivation in moderately degraded savannah.

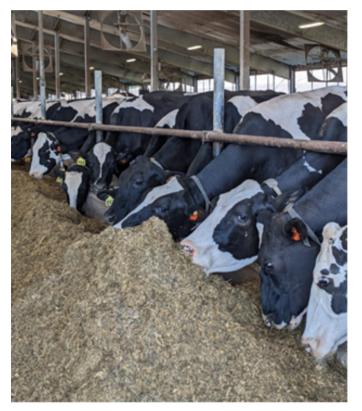
In dairy systems of the United States, the proportion of enteric / manure emissions is close to 50:50.

Source: FAO

Enteric methane

Methanogens: Produce CH4. Without methanogenesis fibre digestion is compromised

Source: <u>http://www.fao.org/in-action/enteric-methane/background/what-is-enteric-methane/en/</u>


Enteric CH₄ mitigation strategies

✓ As many as 98 mitigation strategies reported in 430 peerreviewed journal publications (Arndt et al., 2022).

- ✓ Within the <u>Global CH4 Network Initiative</u>, these are classified into three main categories:
 - 1. Animal and feed management (e.g., Dry matter intake)
 - 2. Diet formulation (e.g., NDF concentration on a DM basis)
 - 3. <u>Rumen manipulation strategies</u> (e.g., 3-NOP, seaweeds, etc.).

Forage on enteric CH₄ emissions

- Increased dry matter intake (DMI) with improved digestibility decreases emissions per unit of DMI / energy corrected milk (ECM).
- ✓ More NDF in low digestibility silages → more CH₄.
- ✓ Enteric CH₄ emissions may be reduced when corn silage replaces grass silage.
- ✓ Silage fermentation quality.

Concentrate on enteric CH₄ emissions

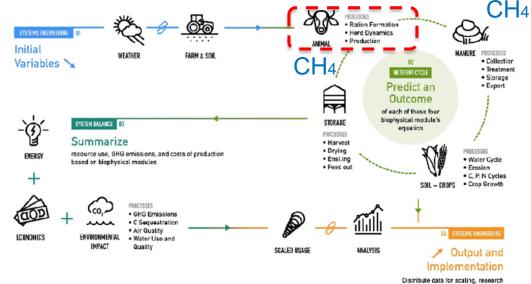
- ✓ Changes in rumen fermentation pattern → more propionate.
- Improved microbial efficiency with optimal level?
- Concentrates have a higher fat (fatty acid) content.
- Greater proportion of starch than NDF digested post-ruminally.

Metrics for accounting reductions in enteric CH₄ emissions

 CH4 intensity (g/kg) – per unit of product. E.g., CH4 / ECM.

✓ CH₄ yield, g/kg DMI.

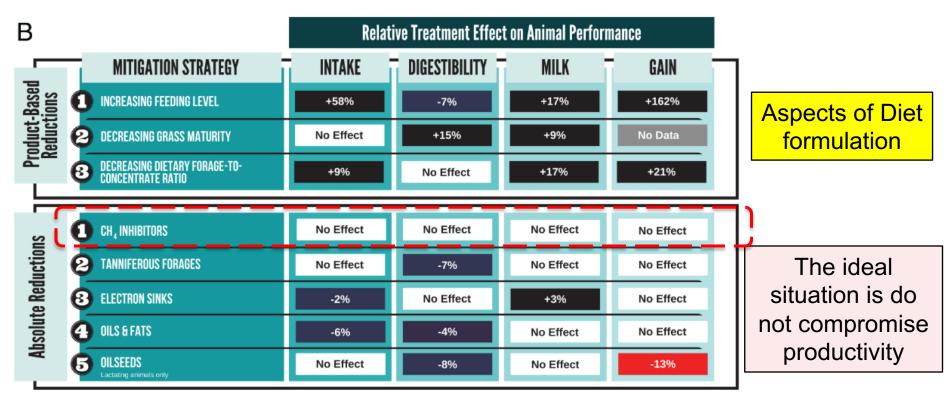
Convenient for comparing animal categories: calves, heifers, cows.


7

Modeling approaches I, II, and III

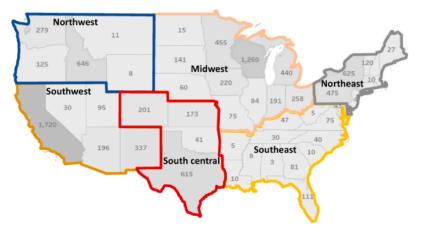
- Empirical. Rely on experimental data to quantify relationships directly and based on a single level (e.g., whole animal). Commonly used for inventory purposes. E.g., IPCC, NASEM, etc.
- ✓ Mechanistic. These are constructed by examining the structure of a system and analyzing the behavior of the system in terms of its individual components and their interactions with one another. E.g., Molly model.
- ✓ Whole-farm models. Some existing models incorporate a number of sub-systems to model the dairy operations. E.g., The Integrated Farm System Model.

Modeling approaches IV


The Ruminant Farm Systems Model (RuFaS). Combines elements from I, II, III and embraces: "technological advances; open, harmonized data; transdisciplinary collaboration; modularity and interoperability; user-driven data and model development".

Ruminant Farm Systems (RuFaS) Model

and policy purposes


Diet and feed additives - overview

Arndt et al. PNAS, 2022

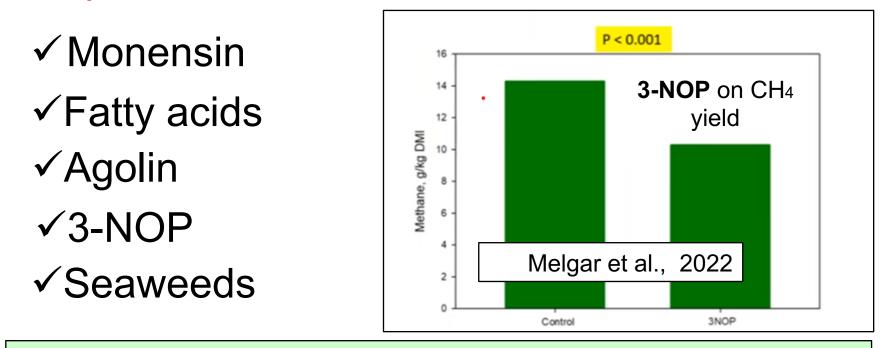
Proposed diets scenarios: forages and concentrates

Proportions of within the forage part of the diet		% within forage	Forage as % of the total diet on	Concentrate as % of the total diet on a
Corn silage	Grass silage	category	a DM basis	DM basis
75	25	100		
50	50	100	75	25
25	75	100	75	25
25	75	100		
75	25	100		
50	50	100	50	50
25	75	100	50	50
25	75	100		
75	25	100		
50	50	100	25	75
25	75	100	25	75
25	75	100		

Expected differences in concentrates composition as a result of feedstuffs availability

Suggested empirical models to be compared within RuFaS simulations

n	Model	Equation		
1	IPCC	(0.065 × GEI)/0.055565		
2	Ramin-Huhtanen	51.5 × DMI^0.792	NASEM, 2021	
3	Mills	(56.27 x (1 - exp (-0.028	x DMI))) / 0.05565	
4	Nielsen et al. 2013	0.294 × DMI -0.347 × FA	A + 0.0409 × dNDF	
5	Niu (Intercontinental	126 + 11.3 × DMI + 2.30	× NDF + 28.8 ×	
J	database)	MilkFat + 0.148 × BW		


GEI = gross energy intake; **DMI** = dry matter intake; **FA** = fatty acids; **dNDF** = digested neutral detergent fiber; **NDF** = diet concentration; **MilkFat** = as it stands for; BW = body weight.

Comments on empirical equations for predicting enteric CH₄ emissions

- ✓ Different levels of complexity.
- ✓ Literature models agree that
 DMI is the main factor driving emissions.
- Effects of diet composition is reported to be lower than DMI but still important for fine tuning models' predictions.

Proposed additives to be tested

Literature data collection is on-going to assess the <u>linear</u> <u>rate of decrease</u> in CH₄ emissions.

On-going work...

- ✓ We are developing a method to evaluate the effects of diet composition, feed additive, and their interactions on expected enteric CH₄ emissions within RuFaS.
- ✓ To assess effectiveness and establishing boundaries for using feed additives in response to simulation of dairy herd dynamics over time.
- ✓ User-input diets to be compared against ideal diet for fulfilling nutritional requirements.
- ✓ Impacts may differ depending on chosen metrics for accounting for CH₄ reductions.

