

RuFaS Grazing Module

Project status and next steps

RuFaS Annual Meeting

Celina M. Laplacette

Dr. Kristan F. Reed

Dr. Hector Menendez III

November 3rd, 2022

Why do we need a grazing module within RuFas?

Impacts and benefits highly variable and difficult to estimate.

RuFaS: decision support tool to evaluate grazing as an alternative management practice.

Purpose of the grazing module:

To develop a model using **system dynamics tools** to represent the management, nutrient cycling and nutrient efficiency in a grazing system for dairy heifers by incorporating model constraints that are specific to the NE region of the United States.

Grazing method

CONTINUOUS

*Southern Forages: Modern Concepts for Forage Crop Management. 3rd Edition (2002)

2

Grazing method

ROTATIONAL

Less selectivity

Higher pasture utilization

Manure distribution

▲	

*Southern Forages: Modern Concepts for Forage Crop Management. 3rd Edition (2002)

Stocking rate = Number of animals Total area * time

Stocking density = <u>Number of animals</u> Grazing area * time

Supplementation

Herd management

Purpose of the grazing module:

To develop a model using **system dynamics tools** to represent the management, nutrient cycling and nutrient efficiency in a grazing system for dairy heifers by incorporating model constraints that are specific to the NE region of the United States.

= stocking rate
≠ stocking density

Why heifers?

- Start simple
- Replacement programs are one of the largest expenses for dairy farms
- Herd health

Purpose of the grazing module:

To develop a model using **system dynamics teols** to represent the management, nutrient cycling and nutrient efficiency in a grazing system for dairy heifers by incorporating model constraints that are specific to the NE region of the United States.

HYPOTHESIS

What are the possible changes that may occur in NE dairy farms as a result of including grazing routines in their systems?

Whole Farm Level

What effects might inclusion of grazing have on N, C and P cycling in NE dairy systems in the future?

Grazing dairy heifers improves nitrogen use efficiency and the carbon footprint at a whole farm systems level

HYPOTHESIS

What are the possible changes observed at the paddock level when choosing a rotational grazing routine instead of a continuous one? Rotational grazing allows reaching higher rates of forage growth and animal consumption compared to continuous.

Rotational grazing decreases the amount of trampled and dead pasture compared to continuous.

Grazing paddock level

Forage growth Trampled pasture Senescence Animal consumption

PROCESSES

- Animal consumption
- Forage dynamics
- DMI limitations
- Supplementation effects

CURRENT STATUS

- Two functional scenarios
- Dynamics represented:
 - Animal: energy and protein requirements, potential and adjusted DMI
 - 1. Potential heifer DMI (NASEM 2021)
 - 2. Intake at rumen capacity 1.2%NDF (Tedeschi et al, 2018)
 - 3. MIN (1, 2) \rightarrow Physically adjusted DMI
 - 4. ME balance + available forage \rightarrow Supplement decision

(Yes=1, No=0)

5. Substitution effect \rightarrow Adjusted DMI

CURRENT STATUS

- Dynamics represented:
 - \checkmark Stocks of green and dry standing pasture
 - ✓ Pasture losses due to consumption, senescence, trampling
 - ✓ Pasture composition?

0.5

Green Proportion in Diet

TO SUMMARIZE

OUTPUTS AVAILABLE

PASTURE

- ☑ Grazing period
- \square Green and dry pasture stocks
- \square Senescence and frost losses
- ☑ Decomposition

PASTURE - ANIMAL

- ☑ Stocking rate
- ☑ Diet selectivity factor
- ☑ Trampling losses
- ☑ Fill effect of diet
- ☑ Herbage allowance limit

ANIMAL

- ☑ Adjusted DMI
- ☑ Supplement feed intake
- ☑ Substitution rate

Purpose of the grazing module:

To develop a model using **system dynamics tools** to represent the management, nutrient cycling and nutrient efficiency in a grazing system for dairy heifers by incorporating model constraints that are specific to the NE region of the United States.

Questions / comments?

Cml347@cornell.edu