# **RuFaS: Manure Module**

Nutrient Recycling and Greenhouse Gas Emissions from dairy housing and manure management

> Dr. Sudharsan Varma Vempalli Dr. Greg Thoma

Email: <u>svvempal@uark.edu</u>

Nov 3<sup>rd</sup> 2022

#### **Outline – Manure Module**



### **Animal module**

#### Pen Management

| Pen Information by animal type |               |  |
|--------------------------------|---------------|--|
| id                             | 0             |  |
| animals                        | CALF, HEIFERS |  |
| housing type                   | open air barn |  |
| pen type                       | freestall     |  |
| Manure management scenario     | 1             |  |
| id                             | 1             |  |
| animals                        | LAC COW       |  |
| housing type                   | open air barn |  |
| pen type                       | freestall     |  |
| Manure management scenario     | 2             |  |
| id                             | 1             |  |
| animals                        | DRY COW       |  |
| housing type                   | open air barn |  |
| pen type                       | freestall     |  |
| Manure management scenario     | 2             |  |

#### Flexibility for users to customize the MMS. Configurations can be reused by different pens.

### Manure module

| Scenario | Pen Ma           | Pen Manure Management |  |
|----------|------------------|-----------------------|--|
| SC 0     | pen              | 0                     |  |
|          | bedding          | organic manure solids |  |
|          | manure handler   | flush system          |  |
|          | manure separator | rotary drum screen    |  |
|          | Treatment 1      | anaerobic lagoon      |  |
|          | Treatment 2      | none                  |  |
| Sc1      | pen              | 1                     |  |
|          | bedding          | organic manure solids |  |
|          | manure handler   | manual scraping       |  |
|          | manure separator | none                  |  |
|          | Treatment 1      | anaerobic digestion   |  |
|          | Treatment 2      | anaerobic lagoon      |  |
| Sc2      | pen              | 2                     |  |
|          | bedding          | sand                  |  |
|          | manure handler   | flush system          |  |
|          | manure separator | sand lane             |  |
|          | Treatment 1      | anaerobic lagoon      |  |
|          | Treatment 2      | none                  |  |
| Sc3      | pen              | 3                     |  |
|          | bedding          | organic manure solids |  |
|          | manure handler   | manual scraping       |  |
|          | manure separator | none                  |  |
|          | Treatment 1      | Slurry storage        |  |
|          | Treatment 2      | none                  |  |

#### How it works?

#### Assigning MMS id to the pen animal management:



With the object-oriented interface, it is more flexible and dynamic in tracking the manure properties through each stage of the manure treatment life cycle.

#### Housing manure collection and distribution

- Animals in each pen will be simulated based on the animal class, housing type, and the number of animals.
- The milking time, no. of milkings per day and the water consumption will be calculated from the milking center and holding pen.
- Allows estimation of housing gas emissions based on the manure characteristics (total or reduced), soiled area (m<sup>2</sup>), and time allocation defaults are assigned to each animal class and housing type with based on the pen designation.

#### Time spent each location is accounted



### MMS processes with functional code



### Simulation output

Some results:

- Manure collection and cleaning methods.
- ✤ Solid/Liquid separation method.
- Overall manure module simulation (Collection thru treatment/storage).
- Gas emissions and manure removal for field application.



#### **Output: manure cleaning and collection**

Pen 1 (Heifer\_II, Heifer\_I) - Scrape system Pen 3 (Lactating cow) – Flush system Number of animals varies each day and data represents (head/day) Simulation days = 751

















#### **Output: Solid-liquid separation**

Pen 3 (Lactating cow) – Flush system

Number of animals varies each day and data represents (head/day)

Simulation days = 751

S/L Separators - Rotary drum screen, screw press, inclined slope screen, etc., Vendor survey provided TS, VS, TKN, P, and K removal efficiencies.



#### Output: Rotary drum screen

TS (kg)



#### Separated solids wet weight (assuming 35% dry matter)



#### Final manure volume after solids are separated



### **Output: Total Simulation**

Pen 3 (Lactating cow) – Flush system; Number of animals varies each day-which is fully accounted in the calculations

#### Sim days = 751

Manure + wash water total volume across all methods.

#### Manure collection activities:

- Manure from barns
- Wash water in all housing components

#### Reception pit:

- Manure + Wash water + Bedding
- ✓ Separator:
  - Fibrous solids and Liquid effluent
- Treatment: Slurry storage

Final total volume (includes the loss of total and volatile solids that happens during the storage time period)



water Flush water volume

#### Methane Emissions

- We simulated one lactating cow for 365 days
- ➤ 120 days emptying frequency
- Temperature (°C) Varying (1a) & constant (1b)
- Note the effect of lower temp on emission rate (red dashed box)





### Solids accumulation & Methane emissions: Slurry storage

- Different animal classes
  - Lactating cow
  - Dry cow
  - Heifer
  - Calf
- Total solids accumulation (kg) with volume after emptying (land application)



### Manure Application to Field - Interface

> Total manure mass/volume and nutrient content is used to calculate optimal application quantity.

> The manure level in storage is then reduced by the applied quantity.

(1) Check manure properties

-Query the manure properties in storage including total amount, TS, and NPK.

(2) Land application day (requested quantity)

-Returns the amount of manure to take out of storage

-Updates storage levels

### **Next steps**

Enabling the outputs (manure data) - to Crop and Soil Module. Merge - other treatment methods (Lagoon and Anaerobic digestion). Tracking the manure (daily time step) during storage and processing/treatment. Implement other gas emission methods (beyond methane: Ammonia, Nitrous oxide..).

#### **RuFaS Manure Module Team**

**Dr. Greg Thoma** 

Dr. Sudharsan Varma Vempalli

Loi Pham

**Michael Eaton** 

**Tim Shelford** 







## Thank you !!