

### **RufaS: Manure module progress**

# Modeling greenhouse gas emissions from dairy housing and manure management system

### Dr. Greg Thoma, Vempalli Sudharsan Varma, Ayham Alnasser, and Joseph Merhi



### Manure module



### Manure module (Collection & Processing)



### Manure module (Gas emissions – Pseudo code)



### **Gas emissions - Algorithms**

• Floor emissions:

| E <sub>CH4 floor</sub>                                                     | max(0.0, 0.13 T ) * A <sub>barn</sub> / 1000                      |                         |                                                                                     |                                       | Value |     |              |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------|---------------------------------------|-------|-----|--------------|
| E <sub>CH4</sub> ,floor =                                                  | daily rate of $CH_4$ emission from the barn floor, kg $CH_4$ /day |                         |                                                                                     | Temp                                  | 0     | 25  | °C           |
| T =                                                                        | ambient bar                                                       | n temperature. °C       | Below 0, no                                                                         |                                       |       |     |              |
| ^ _                                                                        | area of the h                                                     | are floor covered       | emissions (Methane)                                                                 |                                       |       |     |              |
| A <sub>barn</sub> –                                                        |                                                                   |                         |                                                                                     | , , , , , , , , , , , , , , , , , , , |       |     |              |
| Rotz and Oenema, 2006.                                                     |                                                                   | NH₃ Volatilization N    | ITAN*c*ρ/r*M*Q                                                                      | A <sub>barn</sub> Soiled manure       |       |     |              |
|                                                                            |                                                                   | $NH_3$ Volatilization = | NH <sub>3</sub> -N loss (kg N/m²/d)                                                 |                                       |       |     |              |
|                                                                            |                                                                   | ,                       | total ammoniacal N in the manure solution (kg                                       | Tie stall                             | 1.2   |     | m² / cow     |
|                                                                            |                                                                   | TAN =                   | N/m²)                                                                               | Free stall                            | 3.5   |     | m² / cow     |
|                                                                            |                                                                   | c =                     | time conversion (86400 s/d)                                                         | For growing animals                   | 1     | 25  | $m^2$ / boad |
|                                                                            |                                                                   | 0 =                     | kg/m <sup>3</sup> )                                                                 | T OF, Growing animals                 | I     | 2.5 | III- / IIeau |
|                                                                            |                                                                   | r=                      | resistance of NH3 transport from the manure<br>surface to the free atmosphere (s/m) |                                       |       |     |              |
|                                                                            |                                                                   |                         | manure solution mass per unit area of exposed Compost bedder                        |                                       | barn  |     |              |
|                                                                            |                                                                   | M =                     | surface (kg/m <sup>2</sup> )                                                        | For growing animals                   |       | 5   | $m^2$ / head |
|                                                                            |                                                                   |                         | dimensionless equilibrium coefficient for the NH <sub>3</sub>                       | Tor, growing animals                  |       | 5   | III- / IIeau |
| 0 -                                                                        |                                                                   | 0-                      | gas in the air for a given concentration of TAN in                                  | ven concentration of TAN in           |       |     |              |
|                                                                            |                                                                   | Q -                     |                                                                                     |                                       |       |     |              |
| Henry's law of distributi<br>equilibrium coefficient c                     | ion, the<br>can be defined                                        | 0-                      |                                                                                     |                                       |       |     |              |
| as.                                                                        |                                                                   | Q –<br>K. –             | Nh Na<br>Henru's law coefficient                                                    |                                       |       |     |              |
|                                                                            |                                                                   | K <sub>h</sub> =        | disassociation coefficient of ammonium                                              |                                       |       |     |              |
|                                                                            |                                                                   |                         |                                                                                     |                                       |       |     |              |
| Ka = disassociation co<br>ammonium. These two<br>a function of temperature | efficient of<br>coefficients are<br>re and pH                     | •                       |                                                                                     |                                       |       |     |              |
| (Sherlock and Goh, 198                                                     | 35):                                                              | K <sub>h</sub> =        | 10 <sup>(1478 / (T + 273) - 1.69)</sup>                                             |                                       |       |     |              |
|                                                                            |                                                                   | K <sub>a</sub> =        | 1 + 10 <sup>(0.09018 + 2729.9</sup> / ( T + 273) - pH)                              |                                       |       |     |              |
|                                                                            |                                                                   | Т=                      | manure solution temperature (°C)                                                    |                                       |       |     |              |
|                                                                            |                                                                   | pH =                    | manure solution acidity                                                             |                                       |       |     |              |
|                                                                            |                                                                   |                         |                                                                                     |                                       |       |     |              |
|                                                                            |                                                                   | r =                     | HSC (1 – 0.027 (20 – T))                                                            |                                       |       |     |              |
|                                                                            |                                                                   | HSC =                   | housing-specific constant (s/m).                                                    |                                       |       |     |              |

| Emission o<br>surface) | f CH₄ from slurry or lic | uid manure storages is predicted as: (slurry storage with c curst on the                                                                             |              | Sommer et al.,<br>2004 |                          |
|------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|--------------------------|
|                        | ECH4,man=                | (( 24 * V <sub>s,d</sub> * b <sub>1</sub> )/1000) * exp[ln(A) - (E/RT)] + (( 24 * V <sub>s,nd</sub> * b <sub>2</sub> )/1000) *<br>exp[ln(A) -(E/RT)] | 0.002101572  | kg CH₄/day             |                          |
|                        |                          | 2.10                                                                                                                                                 | g CH₄/day    |                        |                          |
|                        |                          |                                                                                                                                                      |              |                        |                          |
|                        | b1                       | 1                                                                                                                                                    |              |                        |                          |
|                        | b2                       | 0.01                                                                                                                                                 |              |                        |                          |
|                        | ln(A)                    | 43.33                                                                                                                                                |              | 0.0244035              |                          |
|                        | E                        | 112700                                                                                                                                               |              | 47.04                  |                          |
|                        | R                        | 8.314                                                                                                                                                |              | 0.02                   |                          |
|                        | Temp (manure) °K         | 288.15                                                                                                                                               | 273.15       |                        |                          |
|                        |                          |                                                                                                                                                      |              |                        | ka VS / animal /         |
|                        | V <sub>s,d</sub> =       | V <sub>s,tot</sub> B <sub>o</sub> / [E <sub>CH4,pot</sub> ]                                                                                          | VS           | 7.7                    | day                      |
|                        |                          | 3546.6                                                                                                                                               | VS           | 2814.2                 | kg VS / animal /<br>year |
|                        |                          |                                                                                                                                                      |              | 1294.5                 |                          |
|                        | V <sub>s,tot</sub> =     | M <sub>manure</sub> * P <sub>TS</sub> * P <sub>VS</sub> - V <sub>s.loss</sub>                                                                        | Manure       | 70.3                   | kg/ animal / day         |
|                        |                          | 4917351130                                                                                                                                           | TS           | 9.07                   | kg/ animal / day         |
|                        |                          |                                                                                                                                                      | VS           | 7.71                   | kg/ animal / day         |
|                        | V <sub>snd</sub> =       | Vs tot - Vs d                                                                                                                                        | VS loss      | 0.6                    |                          |
|                        | -)                       | 4163.4                                                                                                                                               | Во           | 0.2                    | ka CH₄/ka VS             |
|                        |                          |                                                                                                                                                      | fraction VSd | 46%                    | 6                        |
|                        | V <sub>and</sub> =       | Vs.tot. Vs.d                                                                                                                                         |              |                        |                          |
|                        | • 5,10                   | 4163.4                                                                                                                                               |              |                        |                          |
|                        |                          |                                                                                                                                                      |              |                        |                          |
|                        | Ech4,cov =               | ECH4,man * (1 - ηeff)                                                                                                                                |              |                        |                          |

- We plan, to integrate the algorithms into the manure processing
- VS<sub>d</sub> and VS<sub>nd</sub> in daily time steps



*Figure 3.* Prediction of variation in daily  $CH_4$  emissions from cattle slurry during storage in-house and outside. Daily, 1 kg VS was added to the in-house slurry store. Table 3 gives the parameters for the emission estimates.

## **All Together**

```
"default":
{
    "handling": "manual_scraping",
    "separator": "sedimentation",
                                                       Sedimentation
                                                                      Storage Pond
    "storage": "storage_pond"
},
                                           Manual
"manual_scraping":
                         Pen 1: Default
                                           Scraping
{
    "handling": "manual_scraping",
                                                                        Anaerobic
    "separator": "rotary_screen",
                                                       Rotary Screen
                                                                         Lagoon
    "storage": "anaerobic_lagoon"
},
"flush_system":
                         Pen 2: Manual
                           Scraping
ł
    "handling": "flush_system",
                                           Pen 3: Flush
                                                             Flush System
    "storage": "anaerobic_lagoon"
                                             System
},
```

### **Next Steps:**

#### Manure Processing & Gas emissions algorithms

- Merge the gas emissions algorithms to the housing and manure processing methods.
- Complete Compost bedded pack barn and composting treatment methods.
- Preparing new housing and treatment scenario.

### Code development

- We have coded the parts of the MMS and working on putting it all together.
- Complete the remaining coding of the algorithms developed.
- Debugging revisiting the storage/treatment sequences interpreting these interactions in the process level.

#### **Questions/Discussions:**

- If we have all of the practices described and their combinations, will we be able to represent the majority of US dairy manure systems?
- > What should we add to our list for development once this is completed?
- What is the plan for model evaluation? (do we have data for evaluating this model yet?)
- How the model should be divided up into unit processes?
- > Organization of the methods selection of multiple processing methods vs default assumptions
- What level of customization of individual dairy operations is needed for different applications? Archetypical vs. exact representation of a farm?
- Impact of water during cleaning (water volume datasets) flushing & scraping: (emissions decomposition of volatile solids and N)
- Bedding options: Sand / Organic materials mixed with the manure while storage or S/L separation Total solids and volatile solid contribution in the emissions.

## THANK YOU....

### **Contact:**

Varma VS – <u>svvempal@uark.edu</u> Ayham Alnaaser – <u>aaa385@cornell.edu</u> Jospeh Merhi – <u>jm2257@cornell.edu</u> Dr. Greg Thoma – <u>gthoma@uark.edu</u>