Programming RuFaS

A Tour of the Coding Process

Pseudocode

														190 SV	WAT THEORE	ETICAL DOCUME	NTATION, VERSION	₹2009		
v j	£ =0.0000)1*(HB16*(1/HL\$6	-1)-HE16	i)										\mathcal{E}_{ϵ}		$.58 \cdot rsd_{ty}$ $.58 \cdot rsd_{ty} + P_{solutionly}$			3:1	1.2.6
С	D	GR	GS	GT	GU	GV	GW	GX	GY	GZ	HA			where ϵ_C	P is the C:	P ratio of the	residue in the	soil layer, rsd _b	is the residu	ae in
								Layer 1	Layer 2	Layer 3				layer ly ((kg/ha), 0.5	58 is the frac	tion of residue	that is carbon,	orgP _{frsh,ly} is	s the
		initial residue	0				Labile P	31.5	31.5	31.5				phosphor	us in the f	fresh organic	pool in layer	ly (kg P/ha), and	Prolation,ly is	s the
		Fresh N mineral rate	0.05				Fresh P Fraction activ	0 02		0.02				amount o	f phosphor	us in solution	in layer ly (kg	P/ha).		
							active min. r		0.0003	0.0003				T	he decay ra	ite constant de	fines the fracti	on of residue that	is decompo	osed.
														The decay	y rate const	tant is calcula	ted:			
														δ	$n_{r,ly} = \beta_{rsd}$	Ynardy - (Ympdy	γ _{xe,ly}) ^{1/2}		3:1	1.2.7
														where δ .	us is the	residue decar	rate constant	β_{rad} is the rate	coefficient	t for
		Vineralization																ients, yatr,ly is the		
	a .	kg/ha					active N	mineralization	n (kg/ha)	Fresh min	Fresh Decomp							the nutrient cyc		
year 1	jday lue 244 0.0	residue	rsd c:n	rsd c:p	rsd factor	decay rate 0.014392627	layer 1	layer 2	layer3	Layer 1	Layer 1							g water factor for		
1	244 0.0					0.014392627				0	0							factor is calculat		
1	246 0.0 247 0.0					0.012833325				0	0									
1	248 0.0	0.0	0	0	1.000	0.012949843	0.00279627	0.00262554	0.00220162	0	0					exp[-0.693	25			
1	249 0.0 250 0.0		0			0.013029575				0	0									
1	251 0.0	0.0	0	0	1.000	0.013041716	0.00281544	0.00285497	0.00239214	0	0			γ,	err,by = min	exp - 0.693	$\frac{\left(\varepsilon_{C:P} - 200\right)}{200}$		3:1	1.2.8
1	252 0.0 253 0.0				1.000	0.013131908	0.00283469 0.00288082			0	0						200]			
1	254 0.0	0.0		·	1.000	0.02334003	0.00200002	0.00304023	0.0023434							1.	.0			
1	255 0.0 256 0.0				pn	ninrl.f														
1	257 0.0	0.0	0															osition factor for		
1	258 0.0 259 0.0																the soil layer,	and $\mathcal{E}_{C:P}$ is the	C:P ratio or	1 the
1	260 0.0	0.0	8]	F (PB	AL(I)	.GE.	0.0)	THEN	1				the soil la					
1	261 0.0	0.0	8														-	anic N pool is the		
			8				DEI	OMB (T	() = 0					N	$l_{min(l)} = 0.8$	$\cdot \delta_{sor,ly} \cdot orgN_j$	inhJy		3:1	1.2.9
														where N_m	sinfly is the	nitrogen mine	ralized from th	e fresh organic N	pool (kg N	/ha),
			8				CNT	DAY(I	() = 0	.0				$\delta_{nr,ly}$ is th	ne residue	decay rate cor	nstant, and org	$N_{frsk,ly}$ is the nitro	gen in the	fresh
			8															ineralized from t	he fresh org	şanic
			8				TE	/ DRAI	(T)	CT (DLDPBAL	(pool is ad	lded to the	nitrate pool in	the layer.			
			8				Τŀ	(DAYS	(I).	GE. I	1.0) DA	Υ	190							
			8				IF	(DAYS	(I).	EQ. 0	0.0) DA	Y								
			8																	
							DC D	EAC/T		/ADA/3	r\ . /D	A)(C(T)		DD / T	٠,					
			9				PSP	FAC (I	.) = v	AKA ()	L) * (D	AYS(I) >	** VAI	KR(T))					
			9																	
			9				PFI	OW(T)	= ns	nfact	(I) * P	RAL(T)								
									<u> P.</u> :	P. GC										
			9																	
			9				IF	(PFL0	W(I)	.GT.	LABILE	P(I)) Pf	FLOW(:	I) =	LABI	LEP(I)				
			9																	
			9				1.40	ILEP(т\		LARTIE	D/T)	DEL ON	/ T \						
												P(I) - F								
			9				IF	(LABI	LEP(I) .LE	0.0)	LABILE	P(I) :	= 0.0	0					
			9																	
							A G =	TVED	т\ .	ACTE	/ED/ T\	, DELOW	/ T \							
			9									+ PFLOW								
			10				IF	(ACTI	VEP(I) .LE	E. 0.0)	ACTIVE	P(I) :	= 0.0						
			10																	
			10				01-0	DBAL (I) =	DBAL	(T)									
							ULD	FDAL (I) =	FDAL	(1)									
			10																	
			10		E	NDIF														
			10																	
			10																l	

Soil Module

E. Mineralization and Decomposition

Implemented in mineralization_decomp.py.

Mineralization equations represent net mineralization. Both Fresh and Active N are subject to mineralization. Mineralization uses the temperature and soil water factors in

Mineralization from Active N pool (kg/ha) only occurs if the temperature of the soil is greater than 0 °C and is calculated as

$$Nminact = Minrate \times (TempFac \times WaterFac)^{0.5} \times ActiveN$$
 [S.4.E.1]

Minrate Active N mineralization rate (kg/ha; user defined, right now at 0.0003)

N mineralized from the Active pool is transferred from the Active pool to the NH4 pool.

Decomposition and mineralization of Fresh N is only in the first soil layer. Decomposition and mineralization are a function of a daily rate constant that is calculated with the C:N ratio and C:P ratio of the residue, and temperature and soil water factors. The C:N and C:P ratios are calculated as:

$$C: N = \frac{0.58 \kappa_{res}}{FreshN + NO3}$$

$$C: N = 0 \qquad \qquad if \ FreshN + NO3 \le 0 \qquad \qquad \textbf{[5.4.E.2]}$$

$$C: P = \frac{0.58 \times res}{FreshOrganicP + LabileP}$$

$$C: P = 0 \qquad \qquad if \ FreshOrganicP + LabileP \leq 0 \qquad \textbf{[S.4.E.3]}$$

above ground soil residue res

fresh organic Phosphorus in the first layer Fresh organic P LabileP

labile phosphorus calculated and adjusted multiple times in phosphorus cycling

Soil P pools are tracked in the soil P model equations. A decay rate constant (Decay) defines the fraction of residue that is decomposed as:

$$Decay = MinCoeff \times ResComp \times (TempFac \times WaterFac)^{0.5}$$
 [S.4.E.4]

MinCoeff Fresh residue mineralization coefficient (0.05)

This decay rate constant Decay is the same as the decay rate used to calculate residue in Crop, Actual Growth [C.7.A.8]

Pseudocode

- Readable
- Descriptive
- Programmer Friendly
- Code Compatible

Soil Module

$$\begin{array}{ll} V\ olatilization = \left[\frac{FracV\ olatil}{FracNitr} + FracV\ olatil\right] \times T\ otNitriV\ olatil\\ V\ olatilization = 0 & if\ FracNitr + FracV\ olatil \leq 0 & \textbf{[5.4.8.10]} \end{array}$$

C. N loss in leaching runoff erosion

Implemented in leaching_runoff_erosion.py.

All N lost in runoff and erosion is removed from soil layer 1. N in leaching is removed from a given soil layer and added to the next deeper layer.

Only soluble (inorganic) N is susceptible to loss in runoff, i.e. NO3 and NH4. The concentration (kg N/mm H20) of the inorganic pools NO3/NH4 in the top soil layer is:

$$NConc_1 = N \times \frac{\left[1 - exp\left(-\frac{W}{SAT}\right)\right]}{W}$$

[S.4.C.1]

Where "N" is NO3 or NH4

w = Sum of runoff and soil water for layer (i.e. Runoff + SW)

SAT = water content at soil saturation for layer

The mass (kg/ha) of NO3/NH4 loss in runoff (mm) from soil layer 1 only is:

$$NRunoff = NConc_1 \times Cr \times Runoff$$

[S.4.C.2]

r = coefficient of extraction for runoff (calibrated to 0.1 for NO3 and 1 for

NH4)

Runoff = daily runoff (mm H2O)

Similarly, there is no inorganic nitrogen lost in erosion because it has already been accounted for in runoff. For N loss in erosion, soil N concentrations (mg/kg) for the Fresh, Active, and Stable pools are calculated:

$$NConc = \frac{[100 \times N(kg/ha)]}{BD \times depth}$$

[S.4.C.3]

BD = soil layer bulk density (g/cm³)

Depth = soil layer thickness (mm)

If Sed (daily soil loss) is 0, then ErosNLoss is 0 and ER should not be calculated. N mass loss in erosion (kg/ha) is calculated as:

$$ErosNLoss = 0.001 \times NConc \times Sed \times ER$$

[S.4.C.4]

Max Donovan 11:05 AM Jun 6

I added this. In the spreadsheet, NH4Runoff is not calibrated with a coefficient of extraction

Max Donovan 11:56 AM Jun 6

T1.50 AW Juli 0

The spreadsheet has NH4 loss in erosion

Melissa Motew 3:20 PM Aug 8

Good point. The values come out to be 0 because NH4 has so little N compared to the organic pools. But, I'm not sure why there is an equation there for it to begin with.

Development

```
RUFAS: Ruminant Farm Systems Model
File name: soil_temp.py
Author(s): William Donovan, wmdonovan@wisc.edu
Description: This module contains the necessary functions for calculating and
             updating the soil temperature on a given day. Currently the only
             function meant to be used outside of this file is the update_all()
             function. The other functions are meant to serve as helper
             functions within this file.
Soil attribute definitions
    Tsoil = soil temperature (^{\circ}C) at depth z (mm)
    L = lag coefficient, set to 0.8
    Tsoil_prev_day = soil temperature (°C) at depth z (mm) on the previous day
    df = depth factor
                                                            Soil values updated by calling update_all():
                                                                 Tsurf
    Taair = average annual air temperature (^{\circ}C)
                                                                 soil layers.temperature
```

Code

- In-line Comments
- Active Development
- Comparable Variable Names
- Pseudocode Indexing

```
# temperature. "pseudocode soil" S.1.A.1
def calc_Tsoil(soil, weather, time):
    L = 0.8
    # Taair = weather.T_avg_annual[time.year-1]
    Taair = 8.18 # TODO: spreadsheet model fix. Note in pseudocode
    dd = calc dd(soil)
    for x in range(len(soil.soil layers)):
        if x == 0:
            z = soil.soil_layers[x].bottomDepth / 2
            z = (soil.soil_layers[x].bottomDepth +
                 soil.soil layers[x - 1].bottomDepth) / 2
     # soil temperature (C) at depth z (mm) on previous day
        Tsoil_prev_day = soil.soil_layers[x].temperature
        # "pseudosode_soil" S.1.A.3
        zd = z / dd
        # "pseudocode soil" S.1.A.2
        df_{exp} = exp(-0.867 - 2.078 * zd)
        df = zd / (zd + df_{exp})
        # "pseudocode soil" S.1.A.1
        Tsoil = (L * Tsoil_prev_day) + (1 - L) * 
                (df * (Taair - soil.Tsurf) + soil.Tsurf)
        soil.soil_layers[x].temperature = Tsoil
```

Calculates the soil temperature for each layer given average annual air

```
Equations taken from SWAT 2009 documentation. Implemented in soil_temp.py.
```

A. Base equation

$$T_{soil} = \left(L \times T_{soil,d-1}\right) + (1 - L) \times \left[df \times \left(T_{aair} - T_{surf}\right) + T_{surf}\right]$$
[S.1.A]

 $scale = \frac{SW}{[(0.356-0.144\times bd)\times ztot]}$

 $zd = \frac{z}{dd}$

Ztot

 $df = \frac{zd}{[zd + exp(-0.867 - 2.078 \times zd)]}$

Damping depth is a function of soil water and a max damping depth as:

depth at the center of the soil layer

$$dd = dd_{max} \times exp \left\{ ln \left(\frac{500}{dd_{max}} \right) \times \left[\frac{(1-scale)}{(1+scale)} \right]^2 \right\}$$

[S.1.A.4]

soil bulk density (g/cm³) bd total soil water in the profile (mm)

total soil profile depth $dd_{max} = 1000 + \frac{(2500 \times bd)}{[bd + 686 \times exp(-5.63 \times bd)]}$

[S.1.A.6]

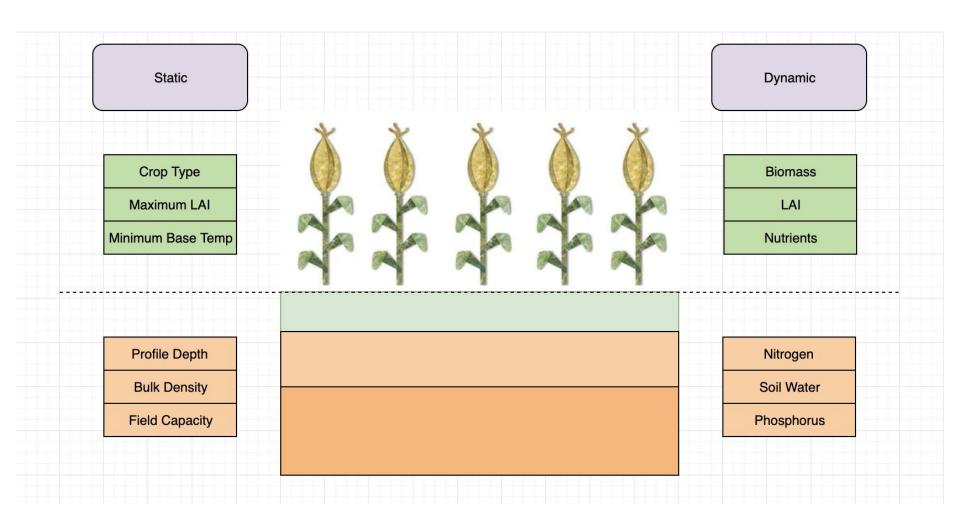
[S.1.A.5]

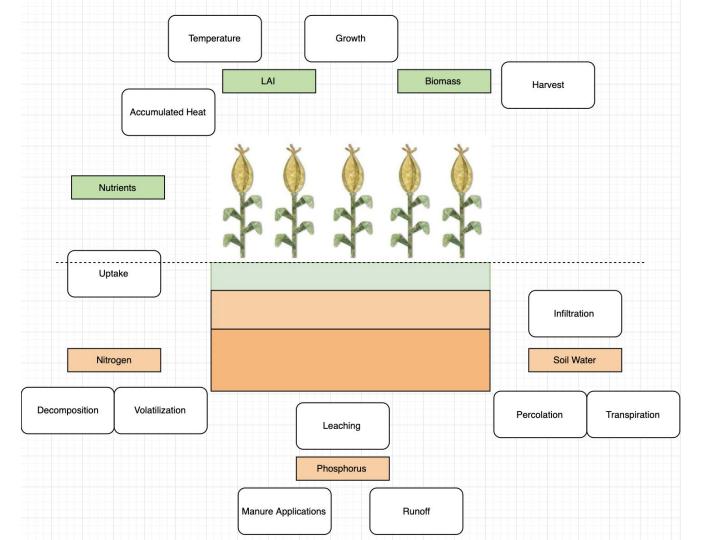
[S.1.A.2]

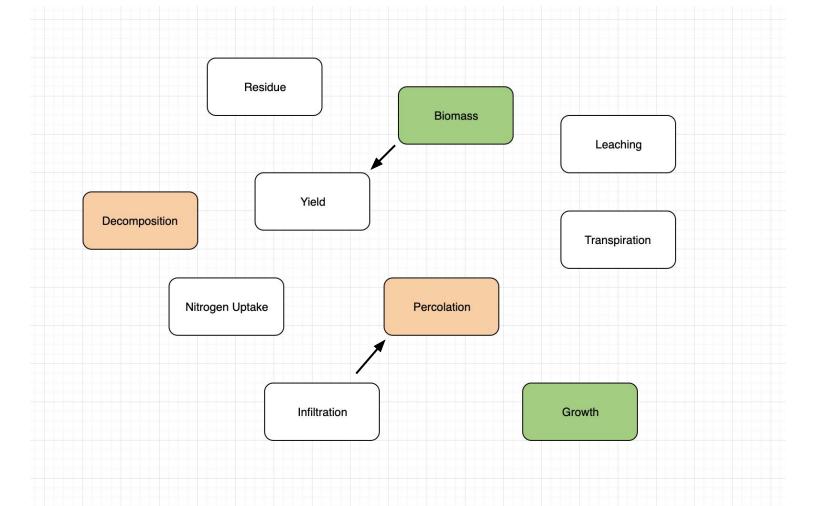
[S.1.A.3]

```
for x in range(len(soil.soil_layers)):
```

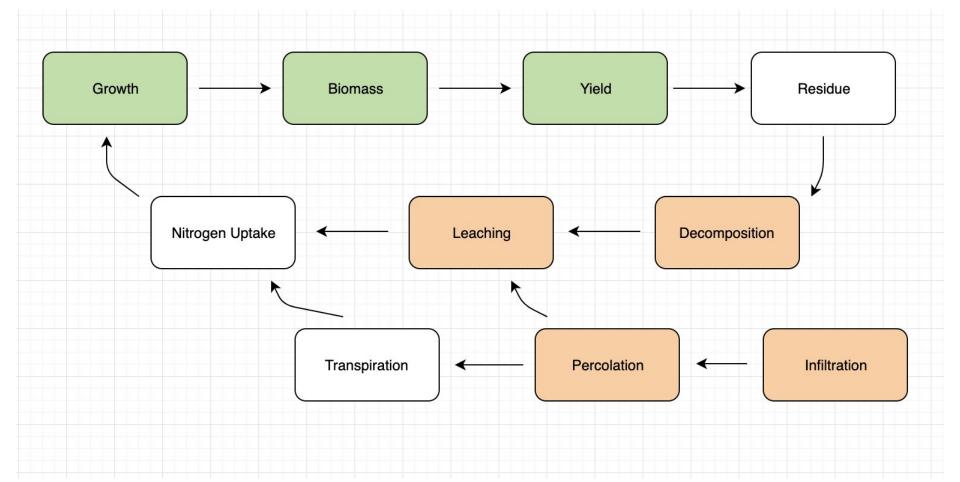
```
if x == 0:
    z = soil.soil layers[x].bottomDepth / 2
else:
    z = (soil.soil_layers[x].bottomDepth +
         soil.soil_layers[x - 1].bottomDepth) / 2
# soil temperature (C) at depth z (mm) on previous day
Tsoil prev day = soil.soil layers[x].temperature
# "pseudocode_soil" S.1.A.3
zd = z / dd
```

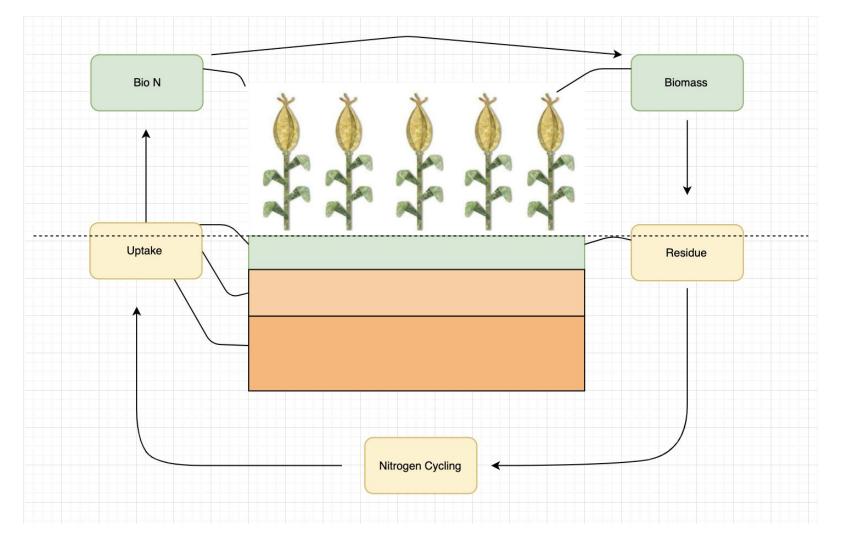

"pseudocode soil" S.1.A.1 $Tsoil = (L * Tsoil_prev_day) + (1 - L) * \setminus$ (df * (Taair - soil.Tsurf) + soil.Tsurf) soil.soil_layers[x].temperature = Tsoil


"pseudocode_soil" S.1.A.2

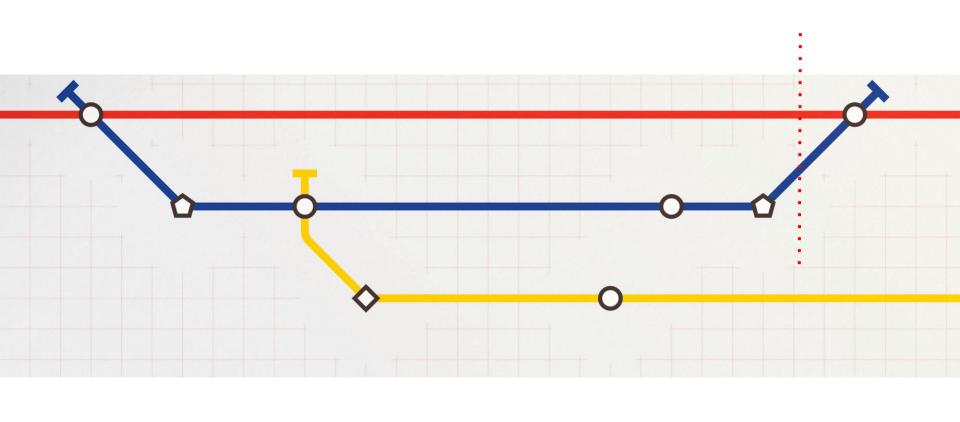

df = zd / (zd + df exp)

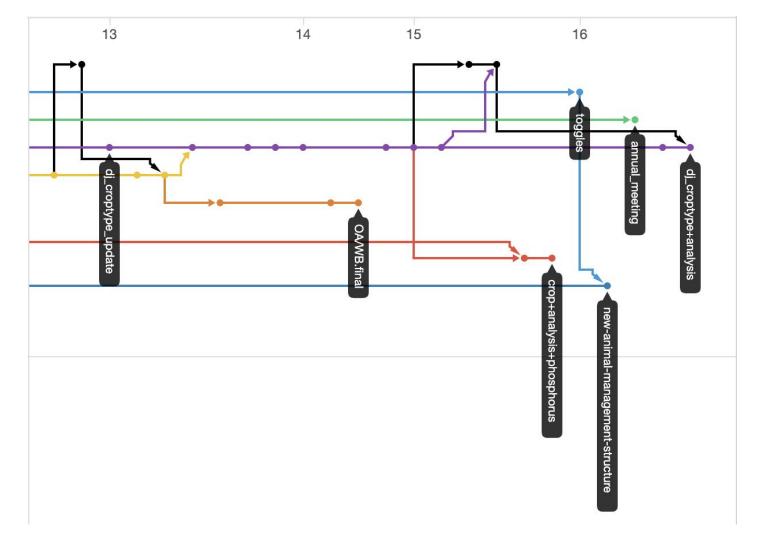
 $df_{exp} = exp(-0.867 - 2.078 * zd)$


Structure



Order of Operations




```
Executes all the daily soil routines.
    soil: instance of the Soil class
    crop: instance of the Crop class
    weather: instance of the Weather class
    time: instance of the Time class
                                                                           # This function calls all the necessary functions to update information related
                                                                           # to nitrogen cycling. The order in which each method is called is significant
# calculate and update the temperature of the soil layers
                                                                           # and is still being worked out.
soil temp.update all(soil, crop, weather, time)
                                                                          def update all(soil, weather, time):
# calculate daily runoff
infiltration.update_all(soil, weather, time)
                                                                              calc_temp_factors(soil)
# calculate daily transpiration
                                                                               calc_water_factors(soil)
evapotranspiration.update_all(soil, crop, weather, time)
                                                                              nitrification volatilization.nitrification volatilization(soil)
# transpiration is defined in the crop module, but called here as a
# component of water balance
                                                                               leaching_runoff_erosion.leaching_runoff_erosion(soil)
transpiration.update_all(crop.current_crop, soil, time)
                                                                              denitrification.denitrification(soil)
# calculate daily percolation
percolation.update all(soil)
                                                                              mineralization_decomp.mineralization_decomp(soil)
# updates daily soil water fluxes
                                                                              humus_mineralization.humus_mineralization(soil)
soil_water.update_all(soil, weather, time)
                                                                              added_manure_N(soil, weather, time)
# calculate daily soil erosion
soil_erosion.update_all(soil, crop, weather, time)
# calculate and update the contents of 3 organic and 2 inorganic nitrogen
# pools
nitrogen cycling.update all(soil, weather, time)
```

def daily soil routine(soil, crop, weather, time):

Outline <		Phosphorus Uptake ×	Biomass			
Soil Temperature	Heat Units	Calculate shape coefficients for	Calculate Maximum potent			
Base equation	Available Heat	Plant Phosphorus Demand	Yields			
Soil Hydrology	FrPHU (Fraction of Potential He	Plant Phosphorus uptake from				
Infiltration	Root Development	Growth Constraints	Calculate water deficiency			
Evapotranspiration	Root development in the soil X	Water stress	Potential Harvest Index Aboveground Biomass			
Percolation	Water Uptake	Temperature stress				
Soil Water Update	Maximum Potential Water Upta	Nitrogen stress	Actual Harvest Index Potential Yield			
Soil Erosion	Impact of low soil water conten					
Base equation, Rainfall Intensity, a	Actual water uptake	Phosphorus stress				
Soil Nitrogen		Growth Factor	Actual Yield			
Initialize soil N Pools	Nitrogen Uptake	Leaf Area Index				
Nitrification and Volatilization	Calculate shape coefficients for Plant Nitrogen Demand	Calculate Leaf Area Index (LAI)	Nutrient Removal			
N loss in leaching_runoff_erosion	Plant nitrogen uptake from soil	Biomass	Residue			

Team Development

