# RuFaS Ruminant Farm Systems Model

The Next Generation of Whole Farm Modeling

# What is RuFaS?

A Next-Generation, Whole-Farm, Dairy Sustainability Simulation Model

- Simulates dairy farm production and environmental impact
- Identifies ways to improve efficiency and sustainability
- Has a range of applications, from a research tool for scientists to a decision-aid tool for the dairy industry
- Coding emphasizes transparency and accessibility to ensure model flexibility, clarity, adaptability, and persistence

# Many models are already out there

- Dairy contributions to climate change are widely discussed but difficult to measure.
- Companies and NGOs need tools to quantify dairy farm emissions and help suppliers achieve net zero emissions.
- Existing models do not capture the complex dynamics on dairy farms, so confusion and mistrust has arisen among dairy industry users.

# TRUTERRA **CFT**







Version 2 Updates

Integrated Farm System Model Version 4.5

USDA / Agricultural Research Service Pasture Systems and Watershed Management Research Unit University Park, Pennsylvania



FARM Environmental Stewardship



Soil & Water Assessment Tool

Whole Farm and Ranch

Accounting System

Carbon and Greenhouse Gas



USDA United States Department of Agriculture Natural Resources Conservation Service

## Founders

#### **Key Stakeholders**





## Evolution



### **RuFaS Goals**



Interoperable



#### Documented



**Open Source** 



Sustainable



his Photo by Unknown Author is licensed under CC BY-SA

Participatory Modeling

- Involves stakeholders in all parts of the model development
  - 2020: Stakeholder Advisory Council
- Creates a shared understanding of the system, the problem and the solutions
- Increases stakeholder ownership of the research outcomes

## How Does RuFaS Work?



# RuFaS "Feed Print"

- Combination of outputs from:
  - Crop and Soil Module
  - Animal Module
  - Systems Balance Module





## Feed Print Breakdown

## Feed Print Breakdown

#### Farm Grown Feeds

- Field Operation Energy Use
- Embedded emissions in fertilizer not accounted for

#### SYSTEMBALANCE

#### Summarize

resource use, GHG emissions, and costs of production based on biophysical modules



ENERGY

# Purchased Feed Contributions to Feed Print

Diet Formulation and Collaborations with FoodS<sup>3</sup> Group



# Animal Module

## Animal Grouping and Diet Formulation



Happens on an interval set by the user (i.e. 1x/week; 1x/month)

## Ration Formulation Outputs

- Pen level deliveries of all feeds
  - Based on # of animals in pen and targeted refusal rate
  - Daily estimates of feed use
- Currently collection of refusals is not represented
  - On the 'To-do' list



# Embedded Emissions of Purchased Feed: FoodS<sup>3</sup> Collaboration

#### 8 of the most important dairy feeds

- Corn grain
- Corn Silage
- DDGS
- Soybean meal
- Wheat
- Wheat middlings
- Alfalfa hay
- Alfalfa Silage

#### **Geographically specific footprints**

#### Two options for use of data:

- 1. Origin not known- use FoodS<sup>3</sup> average based on location of purchase
- Origin known use FoodS<sup>3</sup> value for county of origin

#### Carbon Footprint



# Embedded Emissions of Purchased Feed: FoodS<sup>3</sup> Collaboration

Blue Water Use

Carbon Footprint





#### Embedded Emissions of Purchased Feed: Other Feeds

- National, Regional, or State Level Estimates
  - Depending on data availability
- Currently have emissions estimates for:
  - Almond Hulls
  - Canola Meal
  - Tomato Pomace
  - Bakery
  - Oats
  - Peanut Meal
  - Cottonseed





# Short segue to manure...



# Animal Module

### Methane and Manure Production



## Manure Excretion

- Individual Animal Excretion
- Aggregated by Pen
- Pen manure aggregated by management system at time of collection

#### **Composition**

- Total Solids
- Volatile Solids
  - Degradable
  - Non-degradable
- Total N
- Ammoniacal N
- Urea
- Total P
- Water Soluble P
  - Organic
  - Inorganic
- Total K



#### **Processes**





# Field Energy Use

### System Balance

Summarizing the biophysical module into useful economic, energy, and GHG reports.





# Field Operation Energy Use – Keep it Simple

Fertilization, Tillage, Planting & Harvest

- Approach:
  - Land area fuel use factors
  - Small selection of equipment options
- Based on EPA MOVES2014 model
  - https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulatormoves
- Diesel Emissions factors:
  - Based on UK Department of Business, Energy and Industrial Strategy (~9.5 kg CO<sub>2</sub>-eq/gal diesel)
  - Open to use of other factors

#### **MOVES3: Latest Version of Motor Vehicle Emission Simulator**

EPA's MOtor Vehicle Emission Simulator (MOVES) is a stateof-the-science emission modeling system that estimates emissions for mobile sources at the national, county, and project level for criteria air pollutants, greenhouse gases, and air toxics.

Field operation:

$$\mathbf{F} = \sum_{i}^{n} (\mathbf{Fertilization} + \mathbf{Tillage} + \mathbf{Planting} + \mathbf{Harvesting}) \times \mathbf{Land}_{i} \qquad \text{SB.1. E.1}$$

# Field Operation Energy Use – Keep it Simple

Manure Application

Approach:

- Sum energy costs of pump, agitator, hauling
- Currently no irrigation manure application represented
- Degree of incorporation determined by % on surface and depth of application

#### Manure application:

| pump     |                               |      |  |  |
|----------|-------------------------------|------|--|--|
| Variable | Description                   | Unit |  |  |
| Pi       | Power of pump <i>i</i>        | kW   |  |  |
| V        | Volume of hauling tank        | L    |  |  |
| f        | Volumetric flowrate of pump i | L/h  |  |  |

| Agitator |  |
|----------|--|
| Agitator |  |
|          |  |

| Agnator  |                         |      |  |  |
|----------|-------------------------|------|--|--|
| Variable | Description             | Unit |  |  |
| $P_i$    | Power of agitator i     | kW   |  |  |
| h        | Working hours of pump i | L    |  |  |

#### Manure hauling

| Variable | Description                                   | Unit |
|----------|-----------------------------------------------|------|
| P        | Diesel usage rate for selected hauling method | L/h  |
| $D_i$    | Hauling distance for trip <i>i</i>            | km   |
| v        | Velocity of the hauling vehicle               | km/h |

| Manure application: |                                                                                                     |           |
|---------------------|-----------------------------------------------------------------------------------------------------|-----------|
| Pump:               | $\mathbf{p}\mathbf{p} = \sum_{n=1}^{n} \mathbf{p}_{n} \times \frac{\mathbf{v}_{n}}{\mathbf{p}_{n}}$ | SB.1. F.1 |
| Agitator:           | $\sum_{i}^{n} f_{i}$                                                                                |           |
| Hauling:            | $\mathbf{A}\mathbf{A} = \sum_{i} \mathbf{P}_{i} \times \mathbf{h}$                                  | SB.1. F.2 |
| T                   | $\mathbf{H}\mathbf{H} = \sum_{i}^{n} \mathbf{P} \times \frac{\mathbf{D}_{i}}{\mathbf{V}}$           | SB.1. F.3 |
| i otal energy:      | $\mathbf{E} = \mathbf{P}\mathbf{P} + \mathbf{A}\mathbf{A} + \mathbf{H}\mathbf{H}$                   | SB.1. F.4 |

#### Field Operations: Irrigation

- Currently a user input for farm grown feeds
- Future work to estimate irrigation timing and needs



# Thanks for listening!

kfr3@cornell.edu

