RuFaS Ruminant Farm Systems Model

The Next Generation of Whole Farm Modeling

May 2022 Update

What is RuFaS?

A Next-Generation, Whole-Farm, Dairy Sustainability Simulation Model

- Simulates dairy farm production and environmental impact
- Identifies ways to improve efficiency and sustainability
- Has a range of applications, from a research tool for scientists to a decision-aid tool for the dairy industry
- Coding emphasizes transparency and accessibility to ensure model flexibility, clarity, adaptability, and persistence

How Does RuFaS Work?

RuFaS Goals

Interoperable

Documented

Open Source

Sustainable

Evolution

RuFaS Team

ANIMAL

MANURE

SOIL + CROPS

ENERGY

his Photo by Unknown Author is licensed under CC BY-SA

Participatory Modeling

- Involves stakeholders in all parts of the model development
 - 2020: Stakeholder Advisory Council
- Creates a shared understanding of the system, the problem and the solutions
- Increases stakeholder ownership of the research outcomes

Two Development Foci

Adding/Testing Functionality

- Additional Management Practices
- Input / output methods
- Sensitivity Analyses
- Precision & Accuracy Evaluation

Improving Code Clarity

- Automated testing Unit tests!
- Refactoring large functions
- Sphinx documentation

Unit Testing

- Unit tests isolate a section of code and verify its correctness.
- Purpose is to validate that each unit of the software code performs as expected.
- Ensures that individual components of the system are working correctly at the most granular level.

Sphinx Documentation

- Sphinx is a tool that makes it easy to create intelligent and beautiful documentation.
- Works based on docstrings and has many great features for writing technical documentation including:
 - Webpages
 - PDFs
 - Cross references code with documentation automatically

<pre>def p_comp(animals):</pre>				
	nnn Anges			
	animals: the list of animals for which the P composition should be calculated			
	Returns:			
	p_comp: the P composition of @animals			
	<pre>if len(animals) == 0: return 0 else: total_bw = 0 total_p_animal = 0 for animal in animals: total_bw += animal.body_weight body_weight</pre>			
	total_p_animal += animal.p_animal return total_p_animal / total_bw			

Biophysical Model Progress

Soil & Crop: Version 1 Functionality

SOIL + CROPS

Management

- Tillage: from conventional to notill
- Soil amendment: manure and fertilizer from broadcast to injection
- Flexible planting and harvest dates

<u>Crops</u>

- Corn (grain or silage)
- Alfalfa
- Grass
- Soybeans
- Wheat
- Rye
- Triticale
- Cover & Double Cropping

<u>Outputs</u>

- Emissions: N₂O, CH₄, NH₃, CO₂
- Leaching and Runoff: N & P
- Water use
- Soil C stocks and changes
- Crop yields

Soil + Crop Status

- All functionality for v1 are in the Python repo
 - Double cropping functionality still in development
- Currently in model evaluation and testing phase
 - Soil erosion and P runoff manuscript in prep
- DFRC postdoc will join in June to initiate sensitivity analysis

RUFAS scenarios discussion

Tadeu Eder da Silva – UW-Madison

Hector Menendez - SDSU

Kristan Reed – Cornell University

Victor Cabrera – UW-Madison

Ruminant Farm Systems (RuFaS) Model

and policy purposes

Scenario Development

Results – Corn Production

Legend - Observed - Predicted

Results – Alfalfa Production

²⁰

Results – Soil Erosion

Results – NH₄ Runoff

Results – Soil Carbon Content

Results – Total CO₂ Loss

Scenarios	Total CO ₂ Loss (Ton.)	Dif. Baseline (Ton.)
Baseline	1238574	-
High Fertilization	1253327	14753 (+1.2%)
Low Fertilization	1210362	-28212 (-2,27%)
High Tillage	1238214	-360 (-0.03%)
Low Tillage	1238603	29 (+0.002%)
High Precipitation	1128100	-110474 (-8.9%)
Low Precipitation	1366575	128001 (+10.3%)

Results – Total Soil Carbon

Scenarios	Total Soil C (Ton.)	Dif. Baseline (Ton.)
Baseline	171210.8	-
High Fertilization	174620.8	3410 (+1.2%)
Low Fertilization	165639.6	-5571.2 (-2,27%)
High Tillage	171169.5	-41.3 (-0.02%)
Low Tillage	171214.1	3.3 (+0.002%)
High Precipitation	163720.5	-7490.3 (-4.4%)
Low Precipitation	162177.0	-9033.8 (-5.3%)

Feed: Version 1 Functionality

Management

- Silage and Hay
- Storage separation by forage quality
- Inventory tracking
- Biomass loss during harvest, storage, and feedout
- Different feeds available to each animal group

Forage Composition Changes

- Dry matter content
- Total N and Non-protein N

<u>Outputs</u>

- CO₂ losses during harvest, storage and feedout
- Biomass left on field
- Spoilage/losses from storage and feedout
- Daily forage inventory

Feed Storage Status

- Basic, empirical silage and hay storage functionality
 - Nutrient losses
 - Inventory management
- Have pseudocode for dynamic silage storage
- Connection to ration formulation needs improvement

Animal: Version 1 Functionality

ANIMAL

Management

- Housing: Tie stall, freestall, drylot
- Reproduction: estrus detection, TAI, Re-synch
- Pens: variable number, size, stocking density and grouping methods
- Breeds: Holsteins and Jerseys

<u>Diets</u>

- Diets: 30-70% farm grown forage
- Purchased feed and by products
- Enteric methane mitigation supplements
- Least cost diet formulation

<u>Outputs</u>

- Herd demographics
- Milk and meat production
- Enteric Methane production
- Embedded feed emissions
- Manure production and composition
- Energy, feed and water use

Animal Module Status

- Most functionality exists and some has been tested
- Remaining functionality:
 - Dry lot housing
 - Enteric Methane supplements
 - Update to new NASEM requirements?
- Sensitivity analysis has started with life-cycle sub-module
- Ration formulation evaluation is a top priority

Animal Module Approach

Animal life cycle sub-model

Components of simulation

Lactation curve

Reproduction programs

Culling events

Bodyweight change

Animal life cycle sub-model

Individual animal life story

Animal life cycle submodel

Herd simulation steady state — 1000 adult cow herd

Steady state reached around 3000 d, Galvão et al., 2013 Steady state reached around 700 d, Example from RuFaS

Case study - combine cow and heifer repro programs

Reproductive programs settings

First insemination

Repro case study

Average animal from one reproduction scenario

Average Animal

Time	Average age at
T1	Birth
T2	Wean
Т3	Heifer pregnant
T4	1st Calving
T5	Cow pregnant
Т6	2nd Calve
Τ7	Cow pregnant
Т8	3rd Calve
Т9	Cow pregnant
T10	Culled as a cow

Reproduction program case study — Results

Box-and-whisker plot (median, first and third percentiles, range) of studied reproductive programs

Animal Grouping and Diet Formulation

Happens on an interval set by the user (i.e. 1x/week; 1x/month)

Ration Formulation Approach

J. Dairy Sci. 105:2180–2189 https://doi.org/10.3168/jds.2021-20817

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The application of nonlinear programming on ration formulation for dairy cattle

J. Li,¹ **D** E. Kebreab,¹ **D** Fengqi You,² **D** J. G. Fadel,¹ **D** T. L. Hansen,³ **D** C. VanKerkhove,⁴ **D** and K. F. Reed³* **D** heartment of Animal Science, University of California, Davis 95616 ²Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 ³Department of Animal Science, Cornell University, Ithaca, NY 14853 ⁴School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853

Methane and Manure Production

Manure: Version 1 Functionality

Management Options

- Bedding: Sand or Organic
- Collection: Scraping or Flushing
- Processing: Solid-liquid separation, Anaerobic Digestion
- Storage: Lagoon, Composting, Bedded-pack, daily spread

Management Systems

- Allocated on a per pen basis
- Any combination of options (within reason)
- Milking parlor manure handled separately

<u>Outputs</u>

- Emissions: N₂O, CH₄, NH₃, CO₂
- Leaching and Runoff: N & P
- Water use
- Energy/Fossil Fuel use
- Soil C stocks and changes
- Crop yields

RufaS: Manure module

Vempalli S Varma, Loi Pham, Camille Vadas, Sadman Chowdhury, Greg Thoma

Manure Module Status

- Pseudocode for all functionality is drafted and being reviewed
- Refactoring the existing code to achieve object orientation
- Testing and evaluation not yet started

Manure Module Approach:

- Management systems are established with one option for each setting:
 - Bedding type: sand, manure solids, sawdust etc.,
 - Manure handlers Cleaning: flush/scrape (varying water volume)
 - Storage/Treatment lagoon, pond, solid liquid separation, anaerobic digestion
- We define a pen type and management system are established that can be reused by different pens.

Manure Module Approach:

Milking center Holding area

Animal type: Cow

- Manure from different pens can be combined into the same storage or treatment system objects
- Emissions estimation functions are applied to each object

Manure cleaning, handlers, and treatment methods – (May –Aug, 2022) Housing and treatment gas emissions class functions – (July – Oct, 2022) Parallel Unit testing

Calibration and Sensitivity analysis (Sep – Nov, 2022)

Develop new treatment methods (Oct – Dec, 2022)

Biophysical Model Outputs Feed Energy

Systems Balance Model Progress

Energy Use: Version 1 Functionality

ENERGY

Management Options

- Manure collection methods
- Field operations
- Barn electricity use
 - Milk cooling
 - Heat abatement
- Water and manure pumps

Energy Production

- Anaerobic digestion CH₄ production
- (solar panel electricity production)

<u>Outputs</u>

- Gas and diesel use
- Electricity use
- Electricity or NG production

Energy Use Approach:

- Foot-printing:
 - Use farm data if available
- Decision support:
 - Develop equation for smallest unit of estimation needed to differentiate between management options
- Example:
 - Cow Cooling:
 - Air circulation per unit of area
 - Water use and pressure per cow

Energy Use Approach:

- Foot printing:
 - Use farm data if available
- Decision support:
 - Develop equation for smallest unit of estimation needed to differentiate between management options
- Example:
 - Cow Cooling:
 - Air circulation per unit of area
 - Water use and pressure per cow

$$F_{cow_fan_cooling} = \frac{h_{sprayer} \times m_{spraywater}}{pump_{eff}} * n_{session}$$

$$K_{fan_number} = \left\lfloor \frac{L_{pen} \times W_{pen}}{A_{fan}} \right\rfloor$$

$$F_{cow_fan_cooling} = K_{fan_number} \times t_{fan_operation} \times fan_{eff}$$

Pilot Testing Objectives

- Evaluate RuFaS performance with commercial farm data
- Compare performance with extant models
- Develop methodology for baseline foot printing with RuFaS
- Use RuFaS to compare management scenarios for impact on all KPIs
- Train industry, CCE, and NGO collaborators in RuFaS application
- Gather stakeholder input on RuFaS reporting content and format
- Gather stakeholder input on GUI needs

Key Performance Indicators

GHG emissions:

(CO₂-eq/yr; CO₂-eq/kg milk; CO₂-eq/ha land; CO₂-eq/animal life span)

Water, P, Energy use

(per kg milk; per ha land)*

N and P runoff

Soil erosion

(kg/ha; kg/kg milk)

Soil Carbon

(% total Carbon; %Active Carbon; %Structural/Slow/Inactive Carbon)*

\bigstar

Feed efficiency

(kg milk/kg total feed; kg milk/ kg purchased feed; kg milk/ kg human-inedible feed)* ightarrow

Production

(kg milk and meat/year; kg milk and meat/ha; kg milk and meat/cow)*

Management Cost

(\$/kg milk, \$/acre)*

Pilot Testing: Cohort 1

Cohort 2 will be larger with more geographic and management diversity

Vision of Success

Created by Rutmer Zijlstra from Noun Project

Footprinting

Calculate baseline estimates of current farm outputs and environmental outcomes

Created by Aficons from Noun Project

Planning

Identify management practices that will generate progress towards your sustainability goals

Implementation

Implement management plan, track progress, strive for continuous improvement

Created by Made x Made from Noun Project

Impacts

Achieve industry-wide progress towards sustainable dairy production

UNIVERSITY OF ARKANSAS.

The Nature 💓 Conservancy

INNOVATION CENTER FOR U.S. DAIRY.

HEALTHY PEOPLE • HEALTHY PRODUCTS • HEALTHY PLANET

副

UNIVERSITY OF CALIFORNIA

General Mills Making Food People Love

Cornell University

NIFA AWARD # 2020-68014-31466

THANK YOU

RuFaS Informs Decision-Makers

Extension Specialists

Use RuFaS to compare system impacts of proposed management practices before implementation

CAFO Planners

Use RuFaS to compare proposed management impacts on nutrient management plans before implementation

NGO Project Planners

Use RuFaS to compare system impacts of proposed projects

Farmers and Consultants

Use RuFaS to track progress of different management practices and inform future decisions

Dairy Processors

Use RuFaS to verify that claims meet company standards

Ecosystem Service Markets

Use RuFaS to quantify ecosystem services

Founders

Key Stakeholders

Results – Phosphorous Erosion

Results – DRP Runoff

Results – Labile Phosphorous

Results – Nitrogen Erosion

Results – Active Nitrogen Erosion

Results – Stable Nitrogen Erosion

Animal life cycle submodel

To determine the number of replications needed:

- Calculate the NR for each of the 100 replications
- Randomly select k values of the NR and take the average 20 times where k = 1-100
- Plot the 20 average NR against the value of *k*
- Plot Horizontal lines for the (i) overall average, (ii) +/- 1% of the overall average
- The selected value for R is the smallest value of k when most of the NR points are within +/- 1% of the mean

Many models are already out there

- Dairy contributions to climate change are widely discussed but difficult to measure.
- Companies and NGOs need tools to quantify dairy farm emissions and help suppliers achieve net zero emissions.
- Existing models do not capture the complex dynamics on dairy farms, so confusion and mistrust has arisen among dairy industry users.

TRUTERRA **CFT**

Version 2 Updates

Integrated Farm System Model Version 4.5

USDA / Agricultural Research Service Pasture Systems and Watershed Management Research Unit University Park, Pennsylvania

FARM Environmental Stewardship

Soil & Water Assessment Tool

Whole Farm and Ranch

Accounting System

Carbon and Greenhouse Gas

USDA United States Department of Agriculture Natural Resources Conservation Service