RuFaS Ruminant Farm Systems Model

The Next Generation of Whole Farm Modeling

December 2021 Update

What is RuFaS?

A Next-Generation, Whole-Farm, Dairy Sustainability Simulation Model

- Simulates dairy farm production and environmental impact
- Identifies ways to improve efficiency and sustainability
- Has a range of applications, from a research tool for scientists to a decision-aid tool for the dairy industry
- Coding emphasizes transparency and accessibility to ensure model flexibility, clarity, adaptability, and persistence

Environmental Impacts of Dairy Production

Dairy production currently accounts for 2-4% of US GHG emissions

Using current technology, we can reduce GHG intensity of milk from 1.9 kg CO_2 -eq/kg to zero

Using existing practices, we can reduce nitrogen & phosphorous losses per kg of milk by 20-40%

Created with BioRender.com

Many models are already out there

- Dairy contributions to climate change are widely discussed but difficult to measure.
- Companies and NGOs need tools to quantify dairy farm emissions and help suppliers achieve net zero emissions.
- Existing models do not capture the complex dynamics on dairy farms, so confusion and mistrust has arisen among dairy industry users.

TRUTERRA **CFT**

Version 2 Updates

Integrated Farm System Model Version 4.5

USDA / Agricultural Research Service Pasture Systems and Watershed Management Research Unit University Park, Pennsylvania

FARM Environmental Stewardship

Soil & Water Assessment Tool

Whole Farm and Ranch

Accounting System

Carbon and Greenhouse Gas

USDA United States Department of Agriculture Natural Resources Conservation Service

RuFaS Goals

Interoperable

Documented

Open Source

Sustainable

his Photo by Unknown Author is licensed under CC BY-SA

Participatory Modeling

- Involves stakeholders in all parts of the model development
 - 2020: Stakeholder Advisory Council
- Creates a shared understanding of the system, the problem and the solutions
- Increases stakeholder ownership of the research outcomes

RuFaS Informs Decision-Makers

Extension Specialists

Use RuFaS to compare system impacts of proposed management practices before implementation

CAFO Planners

Use RuFaS to compare proposed management impacts on nutrient management plans before implementation

NGO Project Planners

Use RuFaS to compare system impacts of proposed projects

Farmers and Consultants

Use RuFaS to track progress of different management practices and inform future decisions

Dairy Processors

Use RuFaS to verify that claims meet company standards

Ecosystem Service Markets

Use RuFaS to quantify ecosystem services

Founders

Key Stakeholders

Evolution

How Does RuFaS Work?

Geographic Footprint

Progress to Date

Funding	
USDA Tech Transfer	\$10,000
USDA-ARS / UVM Post Doc	\$200,000
Jersey Association	\$10,000
DMI	\$1,300,000
General Mills	\$300,000
General Mills NIFA IDEAS grant	\$300,000 \$1,000,000
General Mills NIFA IDEAS grant UW Madison Hatch Funding	\$300,000 \$1,000,000 \$146,000
General Mills NIFA IDEAS grant UW Madison Hatch Funding NEAFA	\$300,000 \$1,000,000 \$146,000 \$100,000

Scholarship

Feature Article

A new modeling environment for integrated dairy system management

Ermias Kebreab,† Kristan F. Reed,† Victor E. Cabrera, $^{\$}$ Peter A. Vadas,# Greg Thoma, $^{\|}$ and Juan M. Tricarico $^{\$}$

animals

Article

The Ruminant Farm Systems Animal Module: A Biophysical Description of Dairy Cattle Management

MDPI MDPI

Tayler L. Hansen ¹, Manfei Li ², Jinghui Li ³, C.J Vankerhove ¹, M.A. Sotirova ¹, Juan M. Tricarico ⁴, Victor E. Cabrera ², Ermias Kebreab ³, and Kristan Reed ^{1,*}

J. Dairy Sci. 105:2180–2189 https://doi.org/10.3168/jds.2

https://doi.org/10.3168/jds.2021-20817 © 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®].

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The application of nonlinear programming on ration formulation for dairy cattle

J. Li, ¹ © E. Kebreab, ¹ © Fengqi You, ² © J. G. Fadel, ¹ © T. L. Hansen, ³ © C. VanKerkhove, ⁴ © and K. F. Reed³ * O ¹Department of Animal Science, University of California, Davis 95616 ²Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 ³Department of Animal Science, Cornell University, Ithaca, NY 14853 ⁴School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853

9 abstracts and conference proceedings

Vision of Success

Created by Rutmer Zijlstra from Noun Project

Footprinting

Calculate baseline estimates of current farm outputs and environmental outcomes

Created by Aficons from Noun Project

Planning

Identify management practices that will generate progress towards your sustainability goals

Implementation

Implement management plan, track progress, strive for continuous improvement

Created by Made x Made from Noun Project

Impacts

Achieve industry-wide progress towards sustainable dairy production

Acceleration Plan 2021-22

Software engineer prepares model for pilot testing Timeline: Early Fall 2021, new features by Summer 2022

RuFaS team develops grazing module

Timeline: Begin Summer 2021, target initial version by Fall 2022

Post-docs evaluate existing RuFaS model

Timeline: Begin Summer 2022

Currently funded

Opportunities for Collaboration

For more information contact:

Dr. Kristan Reed, Cornell University kfr3@cornell.edu (530) 402-5682

THANK YOU