Animal life cycle model of animal module in RuFaS

Summer 2019

RuFaS model Core modules of RuFaS

Weather Herd Management Feed Composition

Herd Dynamics Ration Formulation Production

Growth Harvest Storage

Crops

Weather Crop Management Water Cycle Soil Movement C, P, N Cycles

Soil

Animal

Weather Imports Manure Management

Manure

Collection Storage Export Application

Weather Soil Type/Initial State Crop Management

Core modules of RuFaS

Weather Herd Management **Feed Composition**

Crops

Growth Harvest Storage

> Nutrition and production sub-module

Weather **Crop Management**

Soil Type/Initial State **Crop Management**

RuFaS model Core modules of RuFaS

Nutrition and production sub-module

Animal

Animal life-cycle sub-module

Management & facilities sub-module

Animal module Animal module daily information flow

Animal module Animal module daily information flow

Animal module Animal module daily information flow

- Monte Carlo stochastic simulation
- Simulate individual animal events from birth until leaving on daily basis
- Herd level distributions are represented when individual animals status accumulates
- Modularized to allow flexibility to mix herd and management decisions
- Build a framework allowing incorporate more factors and findings

- Born, gender assigned according to semen type ullet
- Sold, as male/ female calf
- Grow, with initial birth weight and average daily gain
- Sick, calf specific health issues
- Cull, leaving the group before wean

- Wean, feed ightarrow
- Grow, with ADG \bullet

Sick

Cull, leaving the group before breeding

- Estrus, if estrus detection involved, estrus ~ N(21,2.5) \bullet
- Breeding, AI after ED and TAI protocols ightarrow
- Grow, related to nutrition and pregnancy status
- Preg checks, three times on day 32, 91, 200 after Al
- Cull, reproductive failure and health issue

- Grow, nutrition needs and supply
- Sold, as pregnant heifer
- Cull, leaving the group before enter
- Calve, at the end of the gestation $\sim N(278,6)$

	\bigcup	VV

- Lactate, follow the production level specific curve
- Breed, Al after ED and TAI protocols
- Preg checks, three times on day 32, 91, 200
- Calve, at the end of the gestation $\sim N(278,6)$
- Sick, calf sensitive illness
- Cull, leaving the group before wean

Calves	Heifers I	Heifers I
Birth - wean	Wean - breed	Breed - cal
0 - 60	60 - 400	400 - DIP > 2

- Culled
 - Maintenance
 - Sold

	Heifers III	Cow	Culled
lve	Close to calving	Start lactating	For culling
250	- 1st calving	Calved - cull	Culled - sell

Individual animal life story

Herd simulation and iteration

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Growth

Reproduction

Production

Health

Code verification

Model validation

Develop the nimal life-cycle model of animal module t farm system model FaS)

Citable works

Reproduction

Data analysis

Code verification

rowth

Production

Health

Model validation

DAIRY CATTLE REPRODUCTION COUNC

Reproductive Management Strategies for Dairy Heifers

Programs for timed Al

GnRH = Gonadotropin-releasing hormone.

For the timed AI program presented below, the option A yields greater number of pregnancies per insemination than option B

Calendar options

A. Two PGF followed by heat detection B. CIDR program with PGF at removal C. 5-d CIDR-Synch with GnRH and 2 PGF

SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT
	PGF	EDAI	EDAI	EDAI	EDAI	EDAI		CIDR	CIDR	CIDR	CIDR	CIDR	CIDR				CIDR	CIDR	CIDR	CIDR
EDAI		CIDR		5541	50.41						GnRH									
EDAI	PGF	EDAI	EDAI	EDAI	EDAI	EDAI	CIDR	PGF	EDAI	EDAI	EDAI	EDAI	EDAI	CIDR		PGF		GnRH TAI		
EDAI	EDAI						EDAI	EDAI												

Note: This reproductive management sheet was assembled by the Dairy Cattle Reproductive Council (DCRC). Programs are intended to promote sustainable food production through sound dairy practices. The DCRC recommends working with a licensed veterinarian for the proper administration of all treatments.

DAIRY CATTLE REPRODUCTION COUNCI

Reproductive Management Strategies for Dairy Cows

Can be used alone or with presynchronization (see above), and with or without EDAI detection. Presynchronization increases fertility. The use of the CIDR benefits fertility of cows with no CL starting TAI.

Start timed

ΤΔΙ

program

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Growth

Reproduction

Production

Health

Code verification

Model validation

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Growth

Reproduction

ion

Code verification

Model validation

Lactation curve parameters

- Dataset
 - From Council on Dairy Cattle Breeding(CDCB)
- Three goals:
 - Update lactation curve parameters for Holstein and Jersey
 - Investigate production changes along time and regions
 - Find suitable methods to be incorporate in the animal model

Curves across years

Statistical Analysis

		Jers	sey	Hols	stein
Lactation		2006	2011	2006	2011
1st		0.0157	—	< 0.001	—
2nd	2011	< 0.001	_	< 0.001	_
Later		< 0.001	-	< 0.001	—
1st		< 0.001	0.126	< 0.001	< 0.001
2nd	2016	< 0.001	< 0.001	< 0.001	< 0.001
Later		< 0.001	< 0.001	< 0.001	< 0.001

Curves across states

20

Statistical Analysis

			Jersey			Holstein	
Lactation		WI	PA	OH	WI	PA	OH
1 st		<0.001	_	_	<0.001	_	_
2 nd	PA	<0.001	_	_	<0.001	_	_
Later		<0.001	_	_	< 0.001	_	_
1 st		<0.001	0.0016	_	< 0.001	< 0.001	_
2 nd	OH	<0.001	< 0.001	_	< 0.001	< 0.001	_
Later		<0.001	0.046	_	<0.001	<0.001	_
1 st		0.013	< 0.001	0.0369	<0.001	<0.001	0.703
2 nd	NY	0.104	0.0011	< 0.001	<0.001	<0.001	<0.001
Later		0.059	< 0.001	< 0.001	< 0.001	<0.001	< 0.001

Discussion

There are a significant improvement in terms of lactation curve scale in the last 10 years in both breeds. The updating of the lactation curve parameters is necessary.

There are a significant difference in terms of lactation curve scale among different States in 2016. The use of state-specific lactation curve parameters is necessary.

Further analysis could be conducted regards other factors, such as calving season, other lactation models, for instance Dijkstra's model, and milk components curves

Presented in ADSA this year

DEPARTMENT OF DAIRY SCIENCE University of Wisconsin-Madison

Updating Jersey and Holstein lactation curve parameters for the Rumination Farm System Model (RuFaS)

¹Department of Dairy Science, University of Wisconsin - Madison, Madison, WI 53706; ²Department of Animal Science, Cornell University, Ithaca, NY

INTRODUCTION

- In the last decade, milk production has risen mostly due to increased genetic potential and management
- A lactation curve is a mathematical function describing the trend of milk yield with days in milk (DIM) during a lactation
- E.g.: Wood's model $(y = at^b e^{-ct})$
- Parameter a is the scale factor for initial milk yield, b is rate factor for increase in milk yield to peak, and c is the rate factor for decline in milk yield after peak.
- Lactation curves can be used to predict milk yield daily or over long periods of time but must include parameters that are fit to representative data to achieve an acceptable level of accuracy.
- Most of today's dairy simulation models use lactation curve parameters that were fit many years ago when the models were first introduced.
- To better represent current animal performance in a holistic dairy farm system model, the RuFaS model, we investigated changes in lactation curve parameters across breed, parity, and region.
- The RuFaS model is a process-based and daily time-step model, using biophysical equations to represent farm processes.
- · Holstein and Jersey are the two breeds have most dairy cows in the U.S. and also in our dataset, and so are the breeds that are included in this study.

OBJECTIVES

- Analyze how much the lactation performance has improved during the last 10 years for Jersey and Holstein breeds in Wisconsin.
- Explore breed-, parity-, and state-specific lactation curve parameters for 2016 in states with large Jersey populations: Pennsylvania, Ohio, and New York.

MATERIALS & METHODS

Data

- Provided by the Council on Dairy Cattle Breeding
- 12.82 million individual lactations, each one containing at least 10 test-day records and calving dates for 47 states and 22 breeds
- 11.76 million of the lactations belonged to Holstein's, 485.39 thousand to Jersey's, 332.10 thousand to crossbred, 117.56 thousand to Brown Swiss, and 124.95 to other breeds
- **Table 1**. Number of lactations in the studied States

Number of	Wis	consin	Penns	sylvania	0	hio	New	v York
Lactations	Jersey	Holstein	Jersey	Holstein	Jersey	Holstein	Jersey	Holstein
Overall	85,250	3,240,000	61,180	1,700,000	46,810	458,460	39,630	1,660,00
2016	7,906	278,923	5,263	124,524	4,377	28,404	2,957	133,587
2011	7,061	249,931						
2006	6 200	215 925						

- Averaged milk yield every 10 DIM and set the cutoff point at 365 DIM.
- Lactation curve fitting
- Fitted the averaged data to the Wood's lactation curve function using the least square method in the *lmfit* package in Python to get the curve parameters.
- The least square method was chosen for this nonlinear curve fitting to minimize the variation.

RESULTS

 Table 2. Peak time, peak production and accumulated
 305-days production of each curve

	2006,	WI	2011,	WI	2016,	WI	2016	, PA	2016,	, OH	2016	, NY
	Holstein	Jersey	Holstein	Jersey	Holstein	Jersey	Holstein	Jersey	Holstein	Jersey	Holstein	Jerse
	105	83	111	80	117	87	97	71	104	86	111	79
Peak time (days in	61	56	65	56	69	59	62	51	61	53	67	52
milk)	60	55	64	57	67	59	61	52	60	56	65	55
	36.25	25.53	37.15	25.52	39.20	26.88	35.33	25.39	36.99	25.78	37.07	26.1
Peak production	44.86	30.29	46.49	31.33	49.38	32.94	44.72	31.55	46.20	30.53	46.94	32.3
(kg)	46.20	32.03	48.54	32.90	52.24	34.53	47.64	32.99	48.87	32.33	49.72	33.8
	10,218	7,159	10,525	7,215	11,079	7,506	9,981	7,149	10,496	7,273	10,501	7,37
305-day production	11,641	7,894	12,210	8,235	12,944	8,647	11,698	8,432	12,064	8,050	12,329	8,52
(Kg)	11 792	8 2 1 1	12 534	8 503	13 433	8 927	12 207	8 5 3 3	12 489	8 4 2 2	12 783	8 77

Cornell University.

Manfei Li¹, Victor E. Cabrera¹, Kristan F. Reed²

Figure 2. Fitted lactation curves and parameters of Holstein and Jersey from the year 2016 for Wisconsin, Pennsylvania, Ohio, and New York

CONCLUSIONS

- Results showed increased 305-d milk yields and postponed and higher lactation peaks in 2016 compared to 2011 and in 2011 compared to 2006 for Jerseys and Holsteins in all parities in Wisconsin.
- Holstein curves had a greater scale of production (a in the Wood's model), a faster rate of increase to peak (b), and a higher rate of decline after the peak (*c*) than Jersey curves.
- Despite a slower rate to peak, Jersey's curves reached a peak of lactation sooner than Holstein's (27.5 days for 1st lactation and 8.3 days for later lactations).
- Based on our analysis, there is a significant improvement of lactation curves in the last 10 years in both breeds.
- The lactation curves for Wisconsin are significantly higher than the other states in scale factor (a), except for Jersey's in New York in later lactations.
- Some curves are not significantly different from others, such as first lactation Holstein curves between New York and Ohio, all Jersey curves between Wisconsin and New York, later lactation Jersey curves between Pennsylvania and Ohio, and first lactation Jersey curves between Ohio and New York.
- Our results show the necessity of having updated and statespecific lactation curve parameters for milk yield prediction in the Ruminant Farm System model (RuFaS).
- The RuFaS model will incorporate lactation curve parameters as a matrix of inputs according to breed, parity, and state.
- These lactation curves parameters are used to predict milk yields and better inform management decisions allowing sensible reflection of daily production changes caused by diet alterations, pregnancy, or health issues, among others.

ACKNOWLEDGEMENTS

- This work was supported by funding from the American Jersey Association.
- We thank the Council on Dairy Cattle Breeding for sharing the dataset used in this study.

23

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Growth

Reproduction

Production

Health

Code verification

Model validation

Citable works

Data analysis

Develop the Animal life-cycle mod of animal module (RuF

Code Verification

Growth

Reproduction

Production

Health

Model validation

24

Code sample

Code sample

EXPLORER	🕏 calf.py	🅏 heiferl.py	🕏 heiferII.py	🅏 heiferIII.py	🕏 cow.py 🛛 🗨	herd_simulation.py	<pre>{} config</pre>
OPEN EDITORS 2 UNSAVED	n 🕹 cow.py 🕨 📌 C	ow					
ANIMAL-LIFE-CYCLE [WSL]	128						
▶pycache	129	Mante					
▶ .vscode	130	Descriptior	1:				
▶ env	131	update	milking status	s for lactatin	g cows		
• .gitignore	132	start a	at calving, dai	ily milk produ	ction estimate	d by breed and pari	ty speci
🗬 animal base.pv	133	TEMP: f	⁻ at percent, F(CM, body weigh	t during lacta	tion, and dry matte	r intake
animal events.pv	134	just fo	or valid the si	imulation mode	l indication o	of the place for fut	ure adju
<pre>calf pv</pre>	135	Input:					
{} config ison	136	Output:					
	137	estimat	ed_daily_milk_	_produced: est	imated daily m	ilk production from	the lac
	138	fat per	cent: caculate	ed with days i	n milk, for te	mprary use	
🖶 boifert mi	139	dailv f	at correct mi	lk production:	caculated for	m estimated milk pr	oduction
e neiferi.py	140	drv mat	ter intake: ca	aculated from	FCM. davs in m	, ilk. and bodv weigh	t. for t
	141	··· <u>·</u> ·····				,	-,
e heiferIII.py	142 d	ef milking ur	date(self).				
herd_repetition.py	1/13	if solf da	acc(sec)	self gestati	on length - co	nfig dry period.	
herd_simulation.py 5	143	solf n	ilking - False	Serr. Bescarr	on_rengen = co		
 README.md 	144	sell.	wonte add aver	= at(colf_dovc_d			
≡ requirements.txt M	145	Sell.	events.auu_even	C C C C C C C C C C C C C C C C C C C	oorn, ary)		
	146	seltc	ays_in_miik =				
	14/	selfe	estimated_daily	/_milk_produce	d = 0		
	148	selte	stimated_daily	y_milk_produce	d_lst.append(s	eltestimated_dail	y_milk_p
	149	selft	ody_weight_ls	t.append(self.	_body_weight)		
	150	dry_mat	ter_intake = 1	12			
	151	return	0, 0, 0, dry_r	natter_intake			
	152						
	153	<pre>selfdays_</pre>	_in_milk += 1				
	154	if selfbr	reed == 'HO':				
	155	breed_i	ndex = 0				
	156	parity_	_index = 2 if s	<pre>selfcalves -</pre>	1 > 2 else se	lfcalves - 1	
	157	elif self.	breed == 'JE':	:			
	158	breed_i	index = 1				
	159	parity_	index = 2 if s	selfcalves -	1 > 2 else se	lfcalves - 1	
	160						
	161	if config.]	lactation curve	e == 'wood':			
	162	1 = se	lf. determine p	baram value(co	nfig.l[breed i	.ndex][parity index]	, config
	163	m = sel	 lf. determine r	param value(co	nfig.m[breed i	ndex][parity index]	, config
	164	n = se	 If. determine	param value(co	nfig.n[breed i	ndex][parity index]	, config
	165						,
	166	estimat	ed daily milk	produced - 1	* \		
	167	estimat	th now(solf de	produced - I) *)		
	169	mat	h ovn((0 - n))	ays_in_miik, m * colf_ dovice	/ \		
	160		$\frac{1}{1}$	Serruays_	+'.		
	170		. lactation_cur				
	170	estimat	ed_daily_milk_	_produced = co	ntig.a * \		,
OUTLINE	171	(1	<pre>- math.exp((coll </pre>	ontig.c-self	days_in_milk)	/ config.b) / 2) *	

ኒክ 🔹 🚸 🎞 … json 🔍 fic lactation curves are coded here with equations with hard-coded parameters stment with ration formulation and ecnomics caculation ctation curve and fat percent, for temprary use emprary use produced) g.l_std[breed_index][parity_index]) g.m_std[breed_index][parity_index]) .n_std[breed_index][parity_index])

Code sample

EXPLORER	🕏 calf.py	e he			
OPEN EDITORS 2 UNSAVED	👌 cow.py ≬	te Cow	Search or jump to		Pull requests Issue
ANIMAL-LIFE-CYCLE [WSL]	128				
pycache	129				
▶ .vscode	130	De			
▶ env	131			RuminantFarmSyst	ems / MASM Private
🚸 .gitignore	132			-	-
🗬 animal_base.py	133				
🗬 animal_events.py	134			<>Code ⊕ Issues 0	1 Pull requests 4
🗬 calf.py	135	In			
<pre>{} config.json</pre>	136	Ou			
🕏 config.py	137				
🕏 cow.py	138			Branch: animal-life-cy	MASM / animal life
🕏 heiferl.py	139				
🕏 heiferll.py	140			This branch is 22 commit	c aboad 58 commits b
🕏 heiferIII.py	141				is anead, 56 commits b
le herd repetition.py	142	def _m			
herd simulation.py 5	143	if		🖬 manfei-L update with re	epetition and graphs
README.md	144				
In a sequirements.txt	145				
	146				
	147			animal base.pv	update with re
	148				-1
	149			animal events.pv	update with re
	150				
	151			alf.pv	update with re
	152				
	153	se		🖹 config.json	update with re
	154	if			
	155			config.py	Rename confi
	156				
	157	el		🖹 cow.py	update with re
	158				-
	159			heiferl.py	update with re
	160				-
	161	if		🖹 heiferll.py	update with re
	162				
	163			🖹 heiferIII.py	update with re
	164				•
	165			herd_repetition.py	add herd_repe
	166				
	167			herd_simulation.py	update with re
	168				-
	169	el		requirements.txt	Rename requi
	170				•
	4 - 4				

OUTLINE

1/1

es M	1arketplace	Explore									
e					O Unwatch →	2	★ Star	0	°% F	ork	0
	Projects 0	🗏 Wiki	C Security	111	Insights 🔅 S	Setting	gs				
есу	cle /				Create new file	Up	load files	Find f	ile	Histo	ory
pehino	d master.						Ĵ) #22	<u>⊕</u> C	compa	are
						Late	est commit	56db9f	4 2 c	lays aç	go
epeti	tion and graph	IS							2 d	ays ag	go
epeti	tion and graph	IS							2 d	ays ag	go
epeti	tion and graph	IS							2 d	ays ag	go
repeti	tion and graph	IS							2 d	ays ag	go
ig.py	to animal life o	cycle/config.	ру						2 d	ays ag	go
repeti	tion and graph	IS							2 d	ays ag	go
repeti	tion and graph	IS							2 d	ays ag	go
repeti	tion and graph	IS							2 d	ays ag	go
epeti	tion and graph	IS							2 d	ays ag	go
etitio	n								2 d	ays ag	go
epeti	tion and graph	IS							2 d	ays ag	go
iireme	ents.txt to anin	nal life cycle/	requirements.tx	t					2 d	ays ag	go

EXPLORER	🗬 calf.py	🕏 he		
OPEN EDITORS 2 UNSAVED	📌 cow.py	> 📌 Cow	Search or jump to	
ANIMAL-LIFE-CYCLE [WSL]	128			
pycache	130	De		
 vscode 	131		م	
▶ env	132		<u>.</u>	
 animal base pv 	133		_	
animal events.pv	134			
🔹 calf.py	135	In		
{} config.json	136	Ou		
🗬 config.py	137			Duanah, animal life
🗬 cow.py	138			Branch: animai-life
🇬 heiferl.py	139			
🍖 heiferII.py	140			This branch is 22
heiferIII.py	141	def m		
herd_repetition.py	143	if		📩 manfei-L updat
<pre>e nerd_simulation.py 5</pre>	144			-
E requirements tyt	145			
	146			
	147			animal_base.p
	148			,
	149			animal_events.
	150			D
	151			E calf.py
	153	se		
	154	if		■ config.json
	155			
	156			E comg.py
	157	el		va.woo 🗐
	158		_	
	159			heiferl.py
	160			
	161	1†		heiferll.py
	162			
	164			⊨ heiferIII.py
	165			E hard repetition
	166			□ nera_repetition
	167			E herd simulation
	168			
	169	el		requirements.t
	170			
▶ OUTLINE	171			

formatting and edit

Output sample - animal 1000 targeted herd size, 3000days, 1 individual:

Days Born: 3673; Body Weight: 720.72kg; Repro program: TAI, PreSynch + OvSynch 56 + TAIafterPD Parity: 7; Curve: Wood's; Days in milk: 98d; Milk produced: 52.01kg; Days in preg: 0d; Gestation Length: 0d.

Output sample - animal 1000 targeted herd size, 3000days, 1 individual:

Days Born: 2213; Body Weight: 748.90kg; Repro program: TAI, 5dCG2P+PreSynch+OvSynch56+TAIafterPC Parity: 4; Curve: Wood's; Days in milk: 232d; Milk produced: 35.44kg; Days in preg: 137d; Gestation Length: 265d.

Output sample - herd 1000 targeted herd size, 3000days, overall:

28

Output sample - herd 100 iterations 1000 targeted herd size, 3000days:

Herd structure (averaged through 100 iterations) at the end of the simulation											
Calves	HeiferI	HeiferII	HeiferIII	Cows	Cows pregnant	Cows milking	Parity 1	Parity 2	Parity 3		
86.8	419.2	351.1	31.5	999.4	635.4	872.8	363.0	239.6	396.8		

Herd stats (averaged through 100 iterations) for last 365 days of the simulation										
Feed cost	Fixed cost	Repro cost	Milk income	Slaughter value	Service rate	Conception rate	Pregnancy rate			
	\$/c	ow/day		\$/cow		%				
5.44	2.17	0.15	14.08	481.05	54.91	28.23	26.49			

Herd structure (averaged through 100 iterations) at the end of the simulation										
Calves	HeiferI	HeiferII	HeiferIII	Cows	Cows	Cows	Parity 1	Parity 2	Parity 3	
86.8	419.2	351.1	31.5	999.4	635.4	872.8	363.0	239.6	396.8	

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Growth

Reproduction

Production

Health

Code verification

Model validation

Citable works

Data analysis

Develop the Animal life-cycle model of animal module of Ruminant farm system model (RuFaS)

Genetics

Code verification

Growth

Reproduction

Model validation

Parallel comparison

The reproductive and economic impact among 6 reproductive programs for lactating dairy cows including a sensitivity analysis of the cost of hormonal treatments

Introduction

New advancements in the understanding of the reproductive physiology of dairy cows lead to the development of management strategies and technologies to improve the reproductive performance dairv herds and to make more profitable decisions. reproductive management Assess the economic impact of those reproductive management decisions is complicated for farmers perceive the economic impact of that tend to synchronization protocols differently than the real ones, therefore misleading their decisions.

This study had 2 primary objectives:

- 1) To assess the economic impact of using an alternative, more intensive synchronization reproductive programs.
- 2) To quantify the effect of increasing the price of hormones (GnRH and $PGF_{2\alpha}$) on the profitability of intensive reproductive programs.

Experimental procedures

A reproductive economic analysis simulation model (the UW-Cornell DairyRepro\$) was used to compare the economic impact of 6 first TAI reproduction protocols:

- PreSynch-OvSynch with heat detection (ED) before and after first TAI (CR 35%; for ED, SR 60% and CR 30%);
- Presynch-Ovsynch TAI with different CR (35%, 40%, 45%);
- Double-OvSynch+PGF, (CR 50%).

GnRH was set at \$2.6 and PGF2 α to \$2.3 to (US market) and GnRH was set at \$6.7 and PGF2 α to \$5.1 (EU market).

Sensitivity analyses with incremental hormonal prices to find the breakeven point of when high hormonal prices offset the net profit was performed.

Table 1. Comparison in number of hormonal injections and net profit between different reprodu

Reproductive Program	CR (%)	Appro	ximated nur injections (#/cow per y	Net Pro	
		Total	GnRH	$PGF_{2\alpha}$	PGF _{2α} at \$2 GnRH at \$
PreSynch-OvSynch (baseline)	35	7.8	3.12	4.68	-
PreSynch-OvSynch	40	7.6	3.04	4.56	12.7
PreSynch-OvSynch	45	7.4	2.96	4.44	25
PreSynch-OvSynch + ED	35 + 30	6.2	2.48	3.72	5.8
PreSynch-OvSynch + EDpost	35 + 30	6.3	2.52	3.78	17.3
Double-OvSynch+PGF	50	9.2	5.24	3.96	46.2

Figure 1 a, b. Sensitive analysis by identifying the breakeven points when the net profit gain by switching the Presynch-Ovsynch protocols to Double-Ovsynch PG2x protocol become negative with multiples of GnRH and PGF market price.

Alessandro Ricci, Manfei Li, Paul M. Fricke, and Victor E. Cabrera

UNIVERSITÀ DEGLI STUDI DI TORINO

roductive synchronization programs.		European marke	e (\$/dose) (t, when cor	of GnRH or nparing, Pr	$PGF_{2\alpha}$ at bre esynch-Ovsy	akeven pro nch progra	nt points (re ms against t	d numbers he most in	s), when the tensive sync	other price chronization	was set co program, 1	nstant at The Double-	
t Profit gain c (\$/cow	over the baseline per yr)	OvSynch+PGF .											
at \$2.3 and H at \$2.6	PGF _{2α} at \$5.1 and GnRH at \$6.7		Р	rice (\$/do	ose) at brea	akeven po	oint when	compare	ed with Do	uble-OvS	ynch+PGI	F	
-	-	Hormones	Presynch-Ovsynch						Presynch-Ovsynch (35% CR) + ED				
12.7	13.7	-											
25	26.7												
5.8	8.2		35% CR		5% CR 40% CR		45% CR		ED		EDpost		
17.3	22.8	GnRH	32.8	6.7	22.4	6.7	14.2	6.7	19.0	6.7	13.7	6.7	
46.2	32.1	PGF _{2α}	5.1		5.1		5.1		5.1	97.0	5.1	63.0	

- The PreSynch-OvSynch protocols use fewer injections than the Double-OvSynch+PGF protocol but the latter is more profitable.
- The Double-OvSynch+PGF protocol attained greater profit per cow per yr. than PreSynch-OvSynch protocols with ED and was more profitable than the sole Presynch-Ovsynch.
- ED after the first TAI was more profitable than either using ED, before the first TAI or not using ED.
- The prices of hormones would need to be 5 to 14 times more expensive in US market and 2 to 6 times more expensive in the EU market in order for the Presynch-Ovsynch protocols to have more profit than The Double-OvSynch+PGF protocol.

Conclusion

shows that more reproductive programs using more hormones, but having substantial better reproductive performance, are more profitable even when hormonal prices are high

Next steps: Genetics Diseases Validation Challenges:

- Dynamic lactation curve
- Long run time need optimization
- Validate with real farm data

